1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
|
---
title: "Approximate leave-future-out cross-validation for Bayesian time series models"
author: "Paul Bürkner, Jonah Gabry, Aki Vehtari"
date: "`r Sys.Date()`"
output:
html_vignette:
toc: yes
encoding: "UTF-8"
params:
EVAL: !r identical(Sys.getenv("NOT_CRAN"), "true")
---
<!--
%\VignetteEngine{knitr::rmarkdown}
%\VignetteIndexEntry{Approximate leave-future-out cross-validation for Bayesian time series models}
-->
```{r settings, child="children/SETTINGS-knitr.txt"}
```
```{r more-knitr-ops, include=FALSE}
knitr::opts_chunk$set(
cache = TRUE,
message = FALSE,
warning = FALSE
)
```
```{r, child="children/SEE-ONLINE.txt", eval = if (isTRUE(exists("params"))) !params$EVAL else TRUE}
```
## Introduction
One of the most common goals of a time series analysis is to use the observed
series to inform predictions for future observations. We will refer to this task
of predicting a sequence of $M$ future observations as $M$-step-ahead prediction
($M$-SAP). Fortunately, once we have fit a model and can sample from the
posterior predictive distribution, it is straightforward to generate predictions
as far into the future as we want. It is also straightforward to evaluate the
$M$-SAP performance of a time series model by comparing the predictions to the
observed sequence of $M$ future data points once they become available.
Unfortunately, we are often in the position of having to use a model to inform
decisions _before_ we can collect the future observations required for assessing
the predictive performance. If we have many competing models we may also need to
first decide which of the models (or which combination of the models) we should
rely on for predictions. In these situations the best we can do is to use
methods for approximating the expected predictive performance of our models
using only the observations of the time series we already have.
If there were no time dependence in the data or if the focus is to assess
the non-time-dependent part of the model, we could use methods like
leave-one-out cross-validation (LOO-CV). For a data set with $N$ observations,
we refit the model $N$ times, each time leaving out one of the $N$ observations
and assessing how well the model predicts the left-out observation. LOO-CV is
very expensive computationally in most realistic settings, but the Pareto
smoothed importance sampling (PSIS, Vehtari et al, 2017, 2024) algorithm provided by
the *loo* package allows for approximating exact LOO-CV with PSIS-LOO-CV.
PSIS-LOO-CV requires only a single fit of the full model and comes with
diagnostics for assessing the validity of the approximation.
With a time series we can do something similar to LOO-CV but, except in a few
cases, it does not make sense to leave out observations one at a time because
then we are allowing information from the future to influence predictions of the
past (i.e., times $t + 1, t+2, \ldots$ should not be used to predict for time
$t$). To apply the idea of cross-validation to the $M$-SAP case, instead of
leave-*one*-out cross-validation we need some form of leave-*future*-out
cross-validation (LFO-CV). As we will demonstrate in this case study, LFO-CV
does not refer to one particular prediction task but rather to various possible
cross-validation approaches that all involve some form of prediction for new
time series data. Like exact LOO-CV, exact LFO-CV requires refitting the model
many times to different subsets of the data, which is computationally very
costly for most
nontrivial examples, in particular for Bayesian analyses where refitting the
model means estimating a new posterior distribution rather than a point
estimate.
Although PSIS-LOO-CV provides an efficient approximation to exact LOO-CV, until
now there has not been an analogous approximation to exact LFO-CV that
drastically reduces the computational burden while also providing informative
diagnostics about the quality of the approximation. In this case study we
present PSIS-LFO-CV, an algorithm that typically only requires refitting the
time-series model a small number times and will make LFO-CV tractable for many
more realistic applications than previously possible.
More details can be found in our paper about approximate LFO-CV
(Bürkner, Gabry, & Vehtari, 2020), which is available as a preprint on arXiv (https://arxiv.org/abs/1902.06281).
## $M$-step-ahead predictions
Assume we have a time series of observations
$y = (y_1, y_2, \ldots, y_N)$
and let $L$ be the _minimum_ number of observations from the series that
we will require before making predictions for future data. Depending on the
application and how informative the data is, it may not be possible to make
reasonable predictions for $y_{i+1}$ based on $(y_1, \dots, y_{i})$ until $i$ is
large enough so that we can learn enough about the time series to predict future
observations. Setting $L=10$, for example, means that we will only assess
predictive performance starting with observation $y_{11}$, so that we
always have at least 10 previous observations to condition on.
In order to assess $M$-SAP performance we would like to compute the
predictive densities
$$
p(y_{i+1:M} \,|\, y_{1:i}) =
p(y_{i+1}, \ldots, y_{i + M} \,|\, y_{1},...,y_{i})
$$
for each $i \in \{L, \ldots, N - M\}$. The quantities
$p(y_{i+1:M} \,|\, y_{1:i})$ can be computed with the help of the posterior
distribution $p(\theta \,|\, y_{1:i})$ of the parameters $\theta$ conditional on
only the first $i$ observations of the time-series:
$$
p(y_{i+1:M} \,| \, y_{1:i}) =
\int p(y_{i+1:M} \,| \, y_{1:i}, \theta) \, p(\theta\,|\,y_{1:i}) \,d\theta.
$$
Having obtained $S$ draws $(\theta_{1:i}^{(1)}, \ldots, \theta_{1:i}^{(S)})$
from the posterior distribution $p(\theta\,|\,y_{1:i})$, we can estimate
$p(y_{i+1:M} | y_{1:i})$ as
$$
p(y_{i+1:M} \,|\, y_{1:i}) \approx \frac{1}{S}\sum_{s=1}^S p(y_{i+1:M} \,|\, y_{1:i}, \theta_{1:i}^{(s)}).
$$
## Approximate $M$-SAP using importance-sampling {#approximate_MSAP}
Unfortunately, the math above makes use of the posterior distributions from many
different fits of the model to different subsets of the data. That is, to obtain
the predictive density $p(y_{i+1:M} \,|\, y_{1:i})$ requires fitting a model to
only the first $i$ data points, and we will need to do this for every value of
$i$ under consideration (all $i \in \{L, \ldots, N - M\}$).
To reduce the number of models that need to be fit for the purpose of obtaining
each of the densities $p(y_{i+1:M} \,|\, y_{1:i})$, we propose the following
algorithm. First, we refit the model using the first $L$ observations
of the time series and then perform a single exact $M$-step-ahead prediction
step for $p(y_{L+1:M} \,|\, y_{1:L})$.
Recall that $L$ is the minimum number of observations we have deemed
acceptable for making predictions (setting $L=0$ means the first data point will
be predicted only based on the prior). We define $i^\star = L$ as the current
point of refit. Next, starting with $i = i^\star + 1$, we
approximate each $p(y_{i+1:M} \,|\, y_{1:i})$ via
$$
p(y_{i+1:M} \,|\, y_{1:i}) \approx
\frac{ \sum_{s=1}^S w_i^{(s)}\, p(y_{i+1:M} \,|\, y_{1:i}, \theta^{(s)})}
{ \sum_{s=1}^S w_i^{(s)}},
$$
where $\theta^{(s)} = \theta^{(s)}_{1:i^\star}$ are draws from the
posterior distribution based on the first $i^\star$ observations
and $w_i^{(s)}$ are the PSIS weights obtained in two steps.
First, we compute the raw importance ratios
$$
r_i^{(s)} =
\frac{f_{1:i}(\theta^{(s)})}{f_{1:i^\star}(\theta^{(s)})}
\propto \prod_{j \in (i^\star + 1):i} p(y_j \,|\, y_{1:(j-1)}, \theta^{(s)}),
$$
and then stabilize them using PSIS. The
function $f_{1:i}$ denotes the posterior distribution based on the first $i$
observations, that is, $f_{1:i} = p(\theta \,|\, y_{1:i})$, with $f_{1:i^\star}$
defined analogously. The index set $(i^\star + 1):i$ indicates all observations
which are part of the data for the model $f_{1:i}$ whose predictive performance
we are trying to approximate but not for the actually fitted model
$f_{1:i^\star}$. The proportional statement arises from the fact that
we ignore the normalizing constants $p(y_{1:i})$ and $p(y_{1:i^\star})$
of the compared posteriors, which leads to a self-normalized variant of
PSIS (see Vehtari et al, 2017).
Continuing with the next observation, we gradually increase $i$ by $1$ (we move
forward in time) and repeat the process. At some observation $i$, the
variability of the importance ratios $r_i^{(s)}$ will become too large and
importance sampling will fail. We will refer to this particular value of $i$ as
$i^\star_1$. To identify the value of $i^\star_1$, we check for which value of
$i$ does the estimated shape parameter $k$ of the generalized Pareto
distribution first cross a certain threshold $\tau$ (Vehtari et al, 2024). Only
then do we refit the model using the observations up to $i^\star_1$ and restart
the process from there by setting $\theta^{(s)} = \theta^{(s)}_{1:i^\star_1}$
and $i^\star = i^\star_1$ until the next refit.
In some cases we may only need to refit once and in other cases we will find a
value $i^\star_2$ that requires a second refitting, maybe an $i^\star_3$ that
requires a third refitting, and so on. We refit as many times as is required
(only when $k > \tau$) until we arrive at observation $i = N - M$.
For LOO, assuming posterior sample size is 4000 or larger, we recommend to use a threshold of $\tau = 0.7$ (Vehtari et al, 2017, 2024)
and it turns out this is a reasonable threshold for LFO as well (Bürkner et al. 2020).
## Autoregressive models
Autoregressive (AR) models are some of the most commonly used time-series models.
An AR(p) model ---an autoregressive model of order $p$--- can be defined as
$$
y_i = \eta_i + \sum_{k = 1}^p \varphi_k y_{i - k} + \varepsilon_i,
$$
where $\eta_i$ is the linear predictor for the $i$th observation, $\phi_k$ are
the autoregressive parameters and $\varepsilon_i$ are pairwise independent
errors, which are usually assumed to be normally distributed with equal variance
$\sigma^2$. The model implies a recursive formula that allows for computing the
right-hand side of the above equation for observation $i$ based on the values of
the equations for previous observations.
## Case Study: Annual measurements of the level of Lake Huron
To illustrate the application of PSIS-LFO-CV for estimating expected $M$-SAP
performance, we will fit a model for 98 annual measurements of the water level
(in feet) of [Lake Huron](https://en.wikipedia.org/wiki/Lake_Huron) from the
years 1875--1972. This data set is found in the **datasets** R package, which is
installed automatically with **R**.
In addition to the **loo** package, for this analysis we will use the **brms**
interface to Stan to generate a Stan program and fit the model, and also the
**bayesplot** and **ggplot2** packages for plotting.
```{r pkgs, cache=FALSE}
library("brms")
library("loo")
library("bayesplot")
library("ggplot2")
color_scheme_set("brightblue")
theme_set(theme_default())
CHAINS <- 4
SEED <- 5838296
set.seed(SEED)
```
Before fitting a model, we will first put the data into a data frame and then
look at the time series.
```{r hurondata}
N <- length(LakeHuron)
df <- data.frame(
y = as.numeric(LakeHuron),
year = as.numeric(time(LakeHuron)),
time = 1:N
)
ggplot(df, aes(x = year, y = y)) +
geom_point(size = 1) +
labs(
y = "Water Level (ft)",
x = "Year",
title = "Water Level in Lake Huron (1875-1972)"
)
```
The above plot shows rather strong autocorrelation of the time-series as well as
some trend towards lower levels for later points in time.
We can specify an AR(4) model for these data using the **brms** package as
follows:
```{r fit, results = "hide"}
fit <- brm(
y ~ ar(time, p = 4),
data = df,
prior = prior(normal(0, 0.5), class = "ar"),
control = list(adapt_delta = 0.99),
seed = SEED,
chains = CHAINS
)
```
The model implied predictions along with the observed values can be plotted,
which reveals a rather good fit to the data.
```{r plotpreds, cache = FALSE}
preds <- posterior_predict(fit)
preds <- cbind(
Estimate = colMeans(preds),
Q5 = apply(preds, 2, quantile, probs = 0.05),
Q95 = apply(preds, 2, quantile, probs = 0.95)
)
ggplot(cbind(df, preds), aes(x = year, y = Estimate)) +
geom_smooth(aes(ymin = Q5, ymax = Q95), stat = "identity", linewidth = 0.5) +
geom_point(aes(y = y)) +
labs(
y = "Water Level (ft)",
x = "Year",
title = "Water Level in Lake Huron (1875-1972)",
subtitle = "Mean (blue) and 90% predictive intervals (gray) vs. observed data (black)"
)
```
To allow for reasonable predictions of future values, we will require at least
$L = 20$ historical observations (20 years) to make predictions.
```{r setL}
L <- 20
```
We first perform approximate leave-one-out cross-validation (LOO-CV) for the
purpose of later comparison with exact and approximate LFO-CV for the 1-SAP
case.
```{r loo1sap, cache = FALSE}
loo_cv <- loo(log_lik(fit)[, (L + 1):N])
print(loo_cv)
```
## 1-step-ahead predictions leaving out all future values
The most basic version of $M$-SAP is 1-SAP, in which we predict only one step
ahead. In this case, $y_{i+1:M}$ simplifies to $y_{i}$ and the LFO-CV algorithm
becomes considerably simpler than for larger values of $M$.
### Exact 1-step-ahead predictions
Before we compute approximate LFO-CV using PSIS we will first compute
exact LFO-CV for the 1-SAP case so we can use it as a benchmark later.
The initial step for the exact computation is to calculate the log-predictive
densities by refitting the model many times:
```{r exact_loglik, results="hide"}
loglik_exact <- matrix(nrow = ndraws(fit), ncol = N)
for (i in L:(N - 1)) {
past <- 1:i
oos <- i + 1
df_past <- df[past, , drop = FALSE]
df_oos <- df[c(past, oos), , drop = FALSE]
fit_i <- update(fit, newdata = df_past, recompile = FALSE)
loglik_exact[, i + 1] <- log_lik(fit_i, newdata = df_oos, oos = oos)[, oos]
}
```
Then we compute the exact expected log predictive density (ELPD):
```{r helpers}
# some helper functions we'll use throughout
# more stable than log(sum(exp(x)))
log_sum_exp <- function(x) {
max_x <- max(x)
max_x + log(sum(exp(x - max_x)))
}
# more stable than log(mean(exp(x)))
log_mean_exp <- function(x) {
log_sum_exp(x) - log(length(x))
}
# compute log of raw importance ratios
# sums over observations *not* over posterior samples
sum_log_ratios <- function(loglik, ids = NULL) {
if (!is.null(ids)) loglik <- loglik[, ids, drop = FALSE]
rowSums(loglik)
}
# for printing comparisons later
rbind_print <- function(...) {
round(rbind(...), digits = 2)
}
```
```{r exact1sap, cache = FALSE}
exact_elpds_1sap <- apply(loglik_exact, 2, log_mean_exp)
exact_elpd_1sap <- c(ELPD = sum(exact_elpds_1sap[-(1:L)]))
rbind_print(
"LOO" = loo_cv$estimates["elpd_loo", "Estimate"],
"LFO" = exact_elpd_1sap
)
```
We see that the ELPD from LFO-CV for 1-step-ahead predictions is lower than the
ELPD estimate from LOO-CV, which should be expected since LOO-CV is making use
of more of the time series. That is, since the LFO-CV approach only uses
observations from before the left-out data point but LOO-CV uses _all_ data
points other than the left-out observation, we should expect to see the larger
ELPD from LOO-CV.
### Approximate 1-step-ahead predictions
We compute approximate 1-SAP with refit at observations where
the Pareto $k$ estimate exceeds the threshold of $0.7$.
```{r setkthresh}
k_thres <- 0.7
```
The code becomes a little bit more involved as compared to the exact LFO-CV.
Note that we can compute exact 1-SAP at the refitting points, which comes with
no additional computational costs since we had to refit the model anyway.
```{r refit_loglik, results="hide"}
approx_elpds_1sap <- rep(NA, N)
# initialize the process for i = L
past <- 1:L
oos <- L + 1
df_past <- df[past, , drop = FALSE]
df_oos <- df[c(past, oos), , drop = FALSE]
fit_past <- update(fit, newdata = df_past, recompile = FALSE)
loglik <- log_lik(fit_past, newdata = df_oos, oos = oos)
approx_elpds_1sap[L + 1] <- log_mean_exp(loglik[, oos])
# iterate over i > L
i_refit <- L
refits <- L
ks <- NULL
for (i in (L + 1):(N - 1)) {
past <- 1:i
oos <- i + 1
df_past <- df[past, , drop = FALSE]
df_oos <- df[c(past, oos), , drop = FALSE]
loglik <- log_lik(fit_past, newdata = df_oos, oos = oos)
logratio <- sum_log_ratios(loglik, (i_refit + 1):i)
psis_obj <- suppressWarnings(psis(logratio))
k <- pareto_k_values(psis_obj)
ks <- c(ks, k)
if (k > k_thres) {
# refit the model based on the first i observations
i_refit <- i
refits <- c(refits, i)
fit_past <- update(fit_past, newdata = df_past, recompile = FALSE)
loglik <- log_lik(fit_past, newdata = df_oos, oos = oos)
approx_elpds_1sap[i + 1] <- log_mean_exp(loglik[, oos])
} else {
lw <- weights(psis_obj, normalize = TRUE)[, 1]
approx_elpds_1sap[i + 1] <- log_sum_exp(lw + loglik[, oos])
}
}
```
We see that the final Pareto-$k$-estimates are mostly well below the threshold
and that we only needed to refit the model a few times:
```{r plot_ks}
plot_ks <- function(ks, ids, thres = 0.6) {
dat_ks <- data.frame(ks = ks, ids = ids)
ggplot(dat_ks, aes(x = ids, y = ks)) +
geom_point(aes(color = ks > thres), shape = 3, show.legend = FALSE) +
geom_hline(yintercept = thres, linetype = 2, color = "red2") +
scale_color_manual(values = c("cornflowerblue", "darkblue")) +
labs(x = "Data point", y = "Pareto k") +
ylim(-0.5, 1.5)
}
```
```{r refitsummary1sap, cache=FALSE}
cat("Using threshold ", k_thres,
", model was refit ", length(refits),
" times, at observations", refits)
plot_ks(ks, (L + 1):(N - 1))
```
The approximate 1-SAP ELPD is remarkably similar to the exact 1-SAP ELPD
computed above, which indicates our algorithm to compute approximate 1-SAP
worked well for the present data and model.
```{r lfosummary1sap, cache = FALSE}
approx_elpd_1sap <- sum(approx_elpds_1sap, na.rm = TRUE)
rbind_print(
"approx LFO" = approx_elpd_1sap,
"exact LFO" = exact_elpd_1sap
)
```
Plotting exact against approximate predictions, we see that no approximation
value deviates far from its exact counterpart, providing further evidence for
the good quality of our approximation.
```{r plot1sap, cache = FALSE}
dat_elpd <- data.frame(
approx_elpd = approx_elpds_1sap,
exact_elpd = exact_elpds_1sap
)
ggplot(dat_elpd, aes(x = approx_elpd, y = exact_elpd)) +
geom_abline(color = "gray30") +
geom_point(size = 2) +
labs(x = "Approximate ELPDs", y = "Exact ELPDs")
```
We can also look at the maximum difference and average difference between
the approximate and exact ELPD calculations, which also indicate a ver close
approximation:
```{r diffs1sap, cache=FALSE}
max_diff <- with(dat_elpd, max(abs(approx_elpd - exact_elpd), na.rm = TRUE))
mean_diff <- with(dat_elpd, mean(abs(approx_elpd - exact_elpd), na.rm = TRUE))
rbind_print(
"Max diff" = round(max_diff, 2),
"Mean diff" = round(mean_diff, 3)
)
```
## $M$-step-ahead predictions leaving out all future values
To illustrate the application of $M$-SAP for $M > 1$, we next compute exact and
approximate LFO-CV for the 4-SAP case.
### Exact $M$-step-ahead predictions
The necessary steps are the same as for 1-SAP with the exception that the
log-density values of interest are now the sums of the log predictive densities
of four consecutive observations. Further, the stability of the PSIS
approximation actually stays the same for all $M$ as it only depends on the
number of observations we leave out, not on the number of observations we
predict.
```{r exact_loglikm, results="hide"}
M <- 4
loglikm <- matrix(nrow = ndraws(fit), ncol = N)
for (i in L:(N - M)) {
past <- 1:i
oos <- (i + 1):(i + M)
df_past <- df[past, , drop = FALSE]
df_oos <- df[c(past, oos), , drop = FALSE]
fit_past <- update(fit, newdata = df_past, recompile = FALSE)
loglik <- log_lik(fit_past, newdata = df_oos, oos = oos)
loglikm[, i + 1] <- rowSums(loglik[, oos])
}
```
```{r exact4sap, cache = FALSE}
exact_elpds_4sap <- apply(loglikm, 2, log_mean_exp)
(exact_elpd_4sap <- c(ELPD = sum(exact_elpds_4sap, na.rm = TRUE)))
```
### Approximate $M$-step-ahead predictions
Computing the approximate PSIS-LFO-CV for the 4-SAP case is a little bit more
involved than the approximate version for the 1-SAP case, although the
underlying principles remain the same.
```{r refit_loglikm, results="hide"}
approx_elpds_4sap <- rep(NA, N)
# initialize the process for i = L
past <- 1:L
oos <- (L + 1):(L + M)
df_past <- df[past, , drop = FALSE]
df_oos <- df[c(past, oos), , drop = FALSE]
fit_past <- update(fit, newdata = df_past, recompile = FALSE)
loglik <- log_lik(fit_past, newdata = df_oos, oos = oos)
loglikm <- rowSums(loglik[, oos])
approx_elpds_4sap[L + 1] <- log_mean_exp(loglikm)
# iterate over i > L
i_refit <- L
refits <- L
ks <- NULL
for (i in (L + 1):(N - M)) {
past <- 1:i
oos <- (i + 1):(i + M)
df_past <- df[past, , drop = FALSE]
df_oos <- df[c(past, oos), , drop = FALSE]
loglik <- log_lik(fit_past, newdata = df_oos, oos = oos)
logratio <- sum_log_ratios(loglik, (i_refit + 1):i)
psis_obj <- suppressWarnings(psis(logratio))
k <- pareto_k_values(psis_obj)
ks <- c(ks, k)
if (k > k_thres) {
# refit the model based on the first i observations
i_refit <- i
refits <- c(refits, i)
fit_past <- update(fit_past, newdata = df_past, recompile = FALSE)
loglik <- log_lik(fit_past, newdata = df_oos, oos = oos)
loglikm <- rowSums(loglik[, oos])
approx_elpds_4sap[i + 1] <- log_mean_exp(loglikm)
} else {
lw <- weights(psis_obj, normalize = TRUE)[, 1]
loglikm <- rowSums(loglik[, oos])
approx_elpds_4sap[i + 1] <- log_sum_exp(lw + loglikm)
}
}
```
Again, we see that the final Pareto-$k$-estimates are mostly well below the
threshold and that we only needed to refit the model a few times:
```{r refitsummary4sap, cache = FALSE}
cat("Using threshold ", k_thres,
", model was refit ", length(refits),
" times, at observations", refits)
plot_ks(ks, (L + 1):(N - M))
```
The approximate ELPD computed for the 4-SAP case is not as close to its exact
counterpart as in the 1-SAP case. In general, the larger $M$, the larger the
variation of the approximate ELPD around the exact ELPD. It turns out that the
ELPD estimates of AR-models with $M>1$ show particular variation due to their
predictions' dependency on other predicted values. In Bürkner et al. (2020) we
provide further explanation and simulations for these cases.
```{r lfosummary4sap, cache = FALSE}
approx_elpd_4sap <- sum(approx_elpds_4sap, na.rm = TRUE)
rbind_print(
"Approx LFO" = approx_elpd_4sap,
"Exact LFO" = exact_elpd_4sap
)
```
Plotting exact against approximate pointwise predictions confirms that, for a
few specific data points, the approximate predictions underestimate the exact
predictions.
```{r plot4sap, cache = FALSE}
dat_elpd_4sap <- data.frame(
approx_elpd = approx_elpds_4sap,
exact_elpd = exact_elpds_4sap
)
ggplot(dat_elpd_4sap, aes(x = approx_elpd, y = exact_elpd)) +
geom_abline(color = "gray30") +
geom_point(size = 2) +
labs(x = "Approximate ELPDs", y = "Exact ELPDs")
```
## Conclusion
In this case study we have shown how to do carry out exact and approximate
leave-future-out cross-validation for $M$-step-ahead prediction tasks. For the
data and model used in our example, the PSIS-LFO-CV algorithm provides reasonably
stable and accurate results despite not requiring us to refit the model nearly as
many times. For more details on approximate LFO-CV, we refer to Bürkner et al. (2020).
<br />
## References
Bürkner P. C., Gabry J., & Vehtari A. (2020). Approximate leave-future-out cross-validation for time series models. *Journal of Statistical Computation and Simulation*, 90(14):2499-2523. \doi:/10.1080/00949655.2020.1783262.
[Online](https://www.tandfonline.com/doi/full/10.1080/00949655.2020.1783262). [arXiv preprint](https://arxiv.org/abs/1902.06281).
Vehtari A., Gelman A., & Gabry J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. *Statistics and Computing*, 27(5), 1413--1432. \doi:10.1007/s11222-016-9696-4. [Online](https://link.springer.com/article/10.1007/s11222-016-9696-4). [arXiv preprint arXiv:1507.04544](https://arxiv.org/abs/1507.04544).
Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2024).
Pareto smoothed importance sampling. *Journal of Machine Learning Research*,
25(72):1-58. [PDF](https://jmlr.org/papers/v25/19-556.html)
<br />
## Appendix
### Appendix: Session information
```{r sessioninfo}
sessionInfo()
```
### Appendix: Licenses
* Code © 2018, Paul Bürkner, Jonah Gabry, Aki Vehtari (licensed under BSD-3).
* Text © 2018, Paul Bürkner, Jonah Gabry, Aki Vehtari (licensed under CC-BY-NC 4.0).
|