1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
|
#' Compute weighted expectations
#'
#' The `E_loo()` function computes weighted expectations (means, variances,
#' quantiles) using the importance weights obtained from the [PSIS][psis()]
#' smoothing procedure. The expectations estimated by the `E_loo()` function
#' assume that the PSIS approximation is working well.
#' **A small [Pareto k][pareto-k-diagnostic] estimate is necessary,
#' but not sufficient, for `E_loo()` to give reliable estimates**. If the
#' `log_ratios` argument is provided, `E_loo()` also computes a function
#' specific Pareto k diagnostic, which must also be small for a reliable
#' estimate. See more details below.
#'
#' @export
#' @param x A numeric vector or matrix.
#' @param psis_object An object returned by [psis()].
#' @param log_ratios Optionally, a vector or matrix (the same dimensions as `x`)
#' of raw (not smoothed) log ratios. If working with log-likelihood values,
#' the log ratios are the **negative** of those values. If `log_ratios` is
#' specified we are able to compute more accurate [Pareto k][pareto-k-diagnostic]
#' diagnostics specific to `E_loo()`.
#' @param type The type of expectation to compute. The options are
#' `"mean"`, `"variance"`, `"sd"`, and `"quantile"`.
#' @param probs For computing quantiles, a vector of probabilities.
#' @param ... Arguments passed to individual methods.
#'
#' @return A named list with the following components:
#' \describe{
#' \item{`value`}{
#' The result of the computation.
#'
#' For the matrix method, `value` is a vector with `ncol(x)`
#' elements, with one exception: when `type="quantile"` and
#' multiple values are specified in `probs` the `value` component of
#' the returned object is a `length(probs)` by `ncol(x)` matrix.
#'
#' For the default/vector method the `value` component is scalar, with
#' one exception: when `type="quantile"` and multiple values
#' are specified in `probs` the `value` component is a vector with
#' `length(probs)` elements.
#' }
#' \item{`pareto_k`}{
#' Function-specific diagnostic.
#'
#' For the matrix method it will be a vector of length `ncol(x)`
#' containing estimates of the shape parameter \eqn{k} of the
#' generalized Pareto distribution. For the default/vector method,
#' the estimate is a scalar. If `log_ratios` is not specified when
#' calling `E_loo()`, the smoothed log-weights are used to estimate
#' Pareto-k's, which may produce optimistic estimates.
#'
#' For `type="mean"`, `type="var"`, and `type="sd"`, the returned Pareto-k is
#' usually the maximum of the Pareto-k's for the left and right tail of \eqn{hr}
#' and the right tail of \eqn{r}, where \eqn{r} is the importance ratio and
#' \eqn{h=x} for `type="mean"` and \eqn{h=x^2} for `type="var"` and `type="sd"`.
#' If \eqn{h} is binary, constant, or not finite, or if `type="quantile"`, the
#' returned Pareto-k is the Pareto-k for the right tail of \eqn{r}.
#' }
#' }
#'
#'
#' @examples
#' \donttest{
#' if (requireNamespace("rstanarm", quietly = TRUE)) {
#' # Use rstanarm package to quickly fit a model and get both a log-likelihood
#' # matrix and draws from the posterior predictive distribution
#' library("rstanarm")
#'
#' # data from help("lm")
#' ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
#' trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
#' d <- data.frame(
#' weight = c(ctl, trt),
#' group = gl(2, 10, 20, labels = c("Ctl","Trt"))
#' )
#' fit <- stan_glm(weight ~ group, data = d, refresh = 0)
#' yrep <- posterior_predict(fit)
#' dim(yrep)
#'
#' log_ratios <- -1 * log_lik(fit)
#' dim(log_ratios)
#'
#' r_eff <- relative_eff(exp(-log_ratios), chain_id = rep(1:4, each = 1000))
#' psis_object <- psis(log_ratios, r_eff = r_eff, cores = 2)
#'
#' E_loo(yrep, psis_object, type = "mean")
#' E_loo(yrep, psis_object, type = "var")
#' E_loo(yrep, psis_object, type = "sd")
#' E_loo(yrep, psis_object, type = "quantile", probs = 0.5) # median
#' E_loo(yrep, psis_object, type = "quantile", probs = c(0.1, 0.9))
#'
#' # We can get more accurate Pareto k diagnostic if we also provide
#' # the log_ratios argument
#' E_loo(yrep, psis_object, type = "mean", log_ratios = log_ratios)
#' }
#' }
#'
E_loo <- function(x, psis_object, ...) {
UseMethod("E_loo")
}
#' @rdname E_loo
#' @export
E_loo.default <-
function(x,
psis_object,
...,
type = c("mean", "variance", "sd", "quantile"),
probs = NULL,
log_ratios = NULL) {
stopifnot(
is.numeric(x),
is.psis(psis_object),
length(x) == dim(psis_object)[1],
is.null(log_ratios) || (length(x) == length(log_ratios))
)
type <- match.arg(type)
E_fun <- .E_fun(type)
w <- as.vector(weights(psis_object, log = FALSE))
x <- as.vector(x)
out <- E_fun(x, w, probs)
if (is.null(log_ratios)) {
# Use of smoothed ratios gives slightly optimistic
# Pareto-k's, but these are still better than nothing
log_ratios <- weights(psis_object, log = TRUE)
}
h <- switch(
type,
"mean" = x,
"variance" = x^2,
"sd" = x^2,
"quantile" = NULL
)
khat <- E_loo_khat.default(h, psis_object, log_ratios)
list(value = out, pareto_k = khat)
}
#' @rdname E_loo
#' @export
E_loo.matrix <-
function(x,
psis_object,
...,
type = c("mean", "variance", "sd", "quantile"),
probs = NULL,
log_ratios = NULL) {
stopifnot(
is.numeric(x),
is.psis(psis_object),
identical(dim(x), dim(psis_object)),
is.null(log_ratios) || identical(dim(x), dim(log_ratios))
)
type <- match.arg(type)
E_fun <- .E_fun(type)
fun_val <- numeric(1)
if (type == "quantile") {
stopifnot(
is.numeric(probs),
length(probs) >= 1,
all(probs > 0 & probs < 1)
)
fun_val <- numeric(length(probs))
}
w <- weights(psis_object, log = FALSE)
out <- vapply(seq_len(ncol(x)), function(i) {
E_fun(x[, i], w[, i], probs = probs)
}, FUN.VALUE = fun_val)
if (is.null(log_ratios)) {
# Use of smoothed ratios gives slightly optimistic
# Pareto-k's, but these are still better than nothing
log_ratios <- weights(psis_object, log = TRUE)
}
h <- switch(
type,
"mean" = x,
"variance" = x^2,
"sd" = x^2,
"quantile" = NULL
)
khat <- E_loo_khat.matrix(h, psis_object, log_ratios)
list(value = out, pareto_k = khat)
}
#' Select the function to use based on user's 'type' argument
#'
#' @noRd
#' @param type User's `type` argument.
#' @return The function for computing the weighted expectation specified by
#' `type`.
#'
.E_fun <- function(type = c("mean", "variance", "sd", "quantile")) {
switch(
type,
"mean" = .wmean,
"variance" = .wvar,
"sd" = .wsd,
"quantile" = .wquant
)
}
#' loo-weighted mean, variance, and quantiles
#'
#' @noRd
#' @param x,w Vectors of the same length. This should be checked inside
#' `E_loo()` before calling these functions.
#' @param probs Vector of probabilities.
#' @param ... ignored. Having ... allows `probs` to be passed to `.wmean()` and
#' `.wvar()` in `E_loo()` without resulting in an error.
#'
.wmean <- function(x, w, ...) {
sum(w * x)
}
.wvar <- function(x, w, ...) {
# The denominator (1- sum(w^2)) is equal to (ESS-1)/ESS, where effective
# sample size ESS is estimated with the generic target quantity invariant
# estimate 1/sum(w^2), see e.g. "Monte Carlo theory, methods and examples"
# by Owen (2013).
(sum(.wmean(x^2, w)) - sum(.wmean(x, w)^2)) / (1 - sum(w^2))
}
.wsd <- function(x, w, ...) {
sqrt(.wvar(x, w))
}
.wquant <- function(x, w, probs, ...) {
if (all(w == w[1])) {
return(quantile(x, probs = probs, names = FALSE))
}
ord <- order(x)
x <- x[ord]
w <- w[ord]
ww <- cumsum(w)
ww <- ww / ww[length(ww)]
qq <- numeric(length(probs))
for (j in seq_along(probs)) {
ids <- which(ww >= probs[j])
wi <- min(ids)
if (wi == 1) {
qq[j] <- x[1]
} else {
w1 <- ww[wi - 1]
x1 <- x[wi - 1]
qq[j] <- x1 + (x[wi] - x1) * (probs[j] - w1) / (ww[wi] - w1)
}
}
return(qq)
}
#' Compute function-specific k-hat diagnostics
#'
#' @noRd
#' @param log_ratios Vector or matrix of raw (not smoothed) log ratios with the
#' same dimensions as `x`. If working with log-likelihood values, the log
#' ratios are the negative of those values.
#' @return Vector (of length `NCOL(x)`) of k-hat estimates.
#'
E_loo_khat <- function(x, psis_object, log_ratios, ...) {
UseMethod("E_loo_khat")
}
#' @export
E_loo_khat.default <- function(x, psis_object, log_ratios, ...) {
.E_loo_khat_i(x, log_ratios, attr(psis_object, "tail_len"))
}
#' @export
E_loo_khat.matrix <- function(x, psis_object, log_ratios, ...) {
tail_lengths <- attr(psis_object, "tail_len")
if (is.null(x)) {
sapply(seq_len(ncol(log_ratios)), function(i) {
.E_loo_khat_i(x, log_ratios[, i], tail_lengths[i])
})
} else {
sapply(seq_len(ncol(log_ratios)), function(i) {
.E_loo_khat_i(x[, i], log_ratios[, i], tail_lengths[i])
})
}
}
#' Compute function-specific khat estimates
#'
#' @noRd
#' @param x_i Vector of values of function h(theta)
#' @param log_ratios_i S-vector of log_ratios, log(r(theta)), for a single
#' observation.
#' @param tail_len_i Integer tail length used for fitting GPD.
#' @return Scalar h-specific k-hat estimate.
#'
.E_loo_khat_i <- function(x_i, log_ratios_i, tail_len_i) {
h_theta <- x_i
r_theta <- exp(log_ratios_i - max(log_ratios_i))
khat_r <- posterior::pareto_khat(r_theta, tail = "right", ndraws_tail = tail_len_i)
if (is.list(khat_r)) { # retain compatiblity with older posterior that returned a list
khat_r <- khat_r$khat
}
if (is.null(x_i) || is_constant(x_i) || length(unique(x_i))==2 ||
anyNA(x_i) || any(is.infinite(x_i))) {
khat_r
} else {
khat_hr <- posterior::pareto_khat(h_theta * r_theta, tail = "both", ndraws_tail = tail_len_i)
if (is.list(khat_hr)) { # retain compatiblity with older posterior that returned a list
khat_hr <- khat_hr$khat
}
if (is.na(khat_hr) && is.na(khat_r)) {
k <- NA
} else {
k <- max(khat_hr, khat_r, na.rm=TRUE)
}
k
}
}
|