File: E_loo.R

package info (click to toggle)
r-cran-loo 2.9.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 4,836 kB
  • sloc: sh: 15; makefile: 2
file content (313 lines) | stat: -rw-r--r-- 10,311 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
#' Compute weighted expectations
#'
#' The `E_loo()` function computes weighted expectations (means, variances,
#' quantiles) using the importance weights obtained from the [PSIS][psis()]
#' smoothing procedure. The expectations estimated by the `E_loo()` function
#' assume that the PSIS approximation is working well.
#' **A small [Pareto k][pareto-k-diagnostic] estimate is necessary,
#' but not sufficient, for `E_loo()` to give reliable estimates**. If the
#' `log_ratios` argument is provided, `E_loo()` also computes a function
#' specific Pareto k diagnostic, which must also be small for a reliable
#' estimate. See more details below.
#'
#' @export
#' @param x A numeric vector or matrix.
#' @param psis_object An object returned by [psis()].
#' @param log_ratios Optionally, a vector or matrix (the same dimensions as `x`)
#'   of raw (not smoothed) log ratios. If working with log-likelihood values,
#'   the log ratios are the **negative** of those values. If `log_ratios` is
#'   specified we are able to compute more accurate [Pareto k][pareto-k-diagnostic]
#'   diagnostics specific to `E_loo()`.
#' @param type The type of expectation to compute. The options are
#'   `"mean"`, `"variance"`, `"sd"`, and `"quantile"`.
#' @param probs For computing quantiles, a vector of probabilities.
#' @param ... Arguments passed to individual methods.
#'
#' @return A named list with the following components:
#' \describe{
#'   \item{`value`}{
#'   The result of the computation.
#'
#'   For the matrix method, `value` is a vector with `ncol(x)`
#'   elements, with one exception: when `type="quantile"` and
#'   multiple values are specified in `probs` the `value` component of
#'   the returned object is a `length(probs)` by `ncol(x)` matrix.
#'
#'   For the default/vector method the `value` component is scalar, with
#'   one exception: when `type="quantile"` and multiple values
#'   are specified in `probs` the `value` component is a vector with
#'   `length(probs)` elements.
#'   }
#'  \item{`pareto_k`}{
#'   Function-specific diagnostic.
#'
#'   For the matrix method it will be a vector of length `ncol(x)`
#'   containing estimates of the shape parameter \eqn{k} of the
#'   generalized Pareto distribution. For the default/vector method,
#'   the estimate is a scalar. If `log_ratios` is not specified when
#'   calling `E_loo()`, the smoothed log-weights are used to estimate
#'   Pareto-k's, which may produce optimistic estimates.
#'
#'   For `type="mean"`, `type="var"`, and `type="sd"`, the returned Pareto-k is
#'   usually the maximum of the Pareto-k's for the left and right tail of \eqn{hr}
#'   and the right tail of \eqn{r}, where \eqn{r} is the importance ratio and
#'   \eqn{h=x} for `type="mean"` and \eqn{h=x^2} for `type="var"` and `type="sd"`.
#'   If \eqn{h} is binary, constant, or not finite, or if `type="quantile"`, the
#'   returned Pareto-k is the Pareto-k for the right tail of \eqn{r}.
#'  }
#' }
#'
#'
#' @examples
#' \donttest{
#' if (requireNamespace("rstanarm", quietly = TRUE)) {
#' # Use rstanarm package to quickly fit a model and get both a log-likelihood
#' # matrix and draws from the posterior predictive distribution
#' library("rstanarm")
#'
#' # data from help("lm")
#' ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
#' trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
#' d <- data.frame(
#'   weight = c(ctl, trt),
#'   group = gl(2, 10, 20, labels = c("Ctl","Trt"))
#' )
#' fit <- stan_glm(weight ~ group, data = d, refresh = 0)
#' yrep <- posterior_predict(fit)
#' dim(yrep)
#'
#' log_ratios <- -1 * log_lik(fit)
#' dim(log_ratios)
#'
#' r_eff <- relative_eff(exp(-log_ratios), chain_id = rep(1:4, each = 1000))
#' psis_object <- psis(log_ratios, r_eff = r_eff, cores = 2)
#'
#' E_loo(yrep, psis_object, type = "mean")
#' E_loo(yrep, psis_object, type = "var")
#' E_loo(yrep, psis_object, type = "sd")
#' E_loo(yrep, psis_object, type = "quantile", probs = 0.5) # median
#' E_loo(yrep, psis_object, type = "quantile", probs = c(0.1, 0.9))
#'
#' # We can get more accurate Pareto k diagnostic if we also provide
#' # the log_ratios argument
#' E_loo(yrep, psis_object, type = "mean", log_ratios = log_ratios)
#' }
#' }
#'
E_loo <- function(x, psis_object, ...) {
  UseMethod("E_loo")
}

#' @rdname E_loo
#' @export
E_loo.default <-
  function(x,
           psis_object,
           ...,
           type = c("mean", "variance", "sd", "quantile"),
           probs = NULL,
           log_ratios = NULL) {
    stopifnot(
      is.numeric(x),
      is.psis(psis_object),
      length(x) == dim(psis_object)[1],
      is.null(log_ratios) || (length(x) == length(log_ratios))
    )
    type <- match.arg(type)
    E_fun <- .E_fun(type)
    w <- as.vector(weights(psis_object, log = FALSE))
    x <- as.vector(x)
    out <- E_fun(x, w, probs)

    if (is.null(log_ratios)) {
      # Use of smoothed ratios gives slightly optimistic
      # Pareto-k's, but these are still better than nothing
      log_ratios <- weights(psis_object, log = TRUE)
    }
    h <- switch(
      type,
      "mean" = x,
      "variance" = x^2,
      "sd" = x^2,
      "quantile" = NULL
    )
    khat <- E_loo_khat.default(h, psis_object, log_ratios)
    list(value = out, pareto_k = khat)
  }

#' @rdname E_loo
#' @export
E_loo.matrix <-
  function(x,
           psis_object,
           ...,
           type = c("mean", "variance", "sd", "quantile"),
           probs = NULL,
           log_ratios = NULL) {
    stopifnot(
      is.numeric(x),
      is.psis(psis_object),
      identical(dim(x), dim(psis_object)),
      is.null(log_ratios) || identical(dim(x), dim(log_ratios))
    )
    type <- match.arg(type)
    E_fun <- .E_fun(type)
    fun_val <- numeric(1)
    if (type == "quantile") {
      stopifnot(
        is.numeric(probs),
        length(probs) >= 1,
        all(probs > 0 & probs < 1)
      )
      fun_val <- numeric(length(probs))
    }
    w <- weights(psis_object, log = FALSE)

    out <- vapply(seq_len(ncol(x)), function(i) {
      E_fun(x[, i], w[, i], probs = probs)
    }, FUN.VALUE = fun_val)

    if (is.null(log_ratios)) {
      # Use of smoothed ratios gives slightly optimistic
      # Pareto-k's, but these are still better than nothing
      log_ratios <- weights(psis_object, log = TRUE)
    }
    h <- switch(
      type,
      "mean" = x,
      "variance" = x^2,
      "sd" = x^2,
      "quantile" = NULL
    )
    khat <- E_loo_khat.matrix(h, psis_object, log_ratios)
    list(value = out, pareto_k = khat)
  }



#' Select the function to use based on user's 'type' argument
#'
#' @noRd
#' @param type User's `type` argument.
#' @return The function for computing the weighted expectation specified by
#'   `type`.
#'
.E_fun <- function(type = c("mean", "variance", "sd", "quantile")) {
  switch(
    type,
    "mean" = .wmean,
    "variance" = .wvar,
    "sd" = .wsd,
    "quantile" = .wquant
  )
}

#' loo-weighted mean, variance, and quantiles
#'
#' @noRd
#' @param x,w Vectors of the same length. This should be checked inside
#'   `E_loo()` before calling these functions.
#' @param probs Vector of probabilities.
#' @param ... ignored. Having ... allows `probs` to be passed to `.wmean()` and
#'   `.wvar()` in `E_loo()` without resulting in an error.
#'
.wmean <- function(x, w, ...) {
  sum(w * x)
}
.wvar <- function(x, w, ...) {
  # The denominator (1- sum(w^2)) is equal to (ESS-1)/ESS, where effective
  # sample size ESS is estimated with the generic target quantity invariant
  # estimate 1/sum(w^2), see e.g. "Monte Carlo theory, methods and examples"
  # by Owen (2013).
  (sum(.wmean(x^2, w)) - sum(.wmean(x, w)^2)) / (1 - sum(w^2))
}
.wsd <- function(x, w, ...) {
  sqrt(.wvar(x, w))
}
.wquant <- function(x, w, probs, ...) {
  if (all(w == w[1])) {
    return(quantile(x, probs = probs, names = FALSE))
  }

  ord <- order(x)
  x <- x[ord]
  w <- w[ord]
  ww <- cumsum(w)
  ww <- ww / ww[length(ww)]

  qq <- numeric(length(probs))
  for (j in seq_along(probs)) {
    ids <- which(ww >= probs[j])
    wi <- min(ids)
    if (wi == 1) {
      qq[j] <- x[1]
    } else {
      w1 <- ww[wi - 1]
      x1 <- x[wi - 1]
      qq[j] <- x1 + (x[wi] - x1) * (probs[j] - w1) / (ww[wi] - w1)
    }
  }
  return(qq)
}

#' Compute function-specific k-hat diagnostics
#'
#' @noRd
#' @param log_ratios Vector or matrix of raw (not smoothed) log ratios with the
#'   same dimensions as `x`. If working with log-likelihood values, the log
#'   ratios are the negative of those values.
#' @return Vector (of length `NCOL(x)`) of k-hat estimates.
#'
E_loo_khat <- function(x, psis_object, log_ratios, ...) {
  UseMethod("E_loo_khat")
}
#' @export
E_loo_khat.default <- function(x, psis_object, log_ratios, ...) {
  .E_loo_khat_i(x, log_ratios, attr(psis_object, "tail_len"))
}
#' @export
E_loo_khat.matrix <- function(x, psis_object, log_ratios, ...) {
  tail_lengths <- attr(psis_object, "tail_len")
  if (is.null(x)) {
    sapply(seq_len(ncol(log_ratios)), function(i) {
      .E_loo_khat_i(x, log_ratios[, i], tail_lengths[i])
    })
  } else {
    sapply(seq_len(ncol(log_ratios)), function(i) {
      .E_loo_khat_i(x[, i], log_ratios[, i], tail_lengths[i])
    })
  }
}

#' Compute function-specific khat estimates
#'
#' @noRd
#' @param x_i Vector of values of function h(theta)
#' @param log_ratios_i S-vector of log_ratios, log(r(theta)), for a single
#'   observation.
#' @param tail_len_i Integer tail length used for fitting GPD.
#' @return Scalar h-specific k-hat estimate.
#'
.E_loo_khat_i <- function(x_i, log_ratios_i, tail_len_i) {
  h_theta <- x_i
  r_theta <- exp(log_ratios_i - max(log_ratios_i))
  khat_r <- posterior::pareto_khat(r_theta, tail = "right", ndraws_tail = tail_len_i)
  if (is.list(khat_r)) { # retain compatiblity with older posterior that returned a list
    khat_r <- khat_r$khat
  }
  if (is.null(x_i) || is_constant(x_i) || length(unique(x_i))==2 ||
        anyNA(x_i) || any(is.infinite(x_i))) {
    khat_r
  } else {
    khat_hr <- posterior::pareto_khat(h_theta * r_theta, tail = "both", ndraws_tail = tail_len_i)
    if (is.list(khat_hr)) { # retain compatiblity with older posterior that returned a list
      khat_hr <- khat_hr$khat
    }
    if (is.na(khat_hr) && is.na(khat_r)) {
      k <- NA
    } else {
      k <- max(khat_hr, khat_r, na.rm=TRUE)
    }
    k
  }
}