1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
|
#' Diagnostics for Pareto smoothed importance sampling (PSIS)
#'
#' Print a diagnostic table summarizing the estimated Pareto shape parameters
#' and PSIS effective sample sizes, find the indexes of observations for which
#' the estimated Pareto shape parameter \eqn{k} is larger than some
#' `threshold` value, or plot observation indexes vs. diagnostic estimates.
#' The **Details** section below provides a brief overview of the
#' diagnostics, but we recommend consulting Vehtari, Gelman, and Gabry (2017)
#' and Vehtari, Simpson, Gelman, Yao, and Gabry (2024) for full details.
#'
#' @name pareto-k-diagnostic
#' @param x An object created by [loo()] or [psis()].
#' @param threshold For `pareto_k_ids()`, `threshold` is the minimum \eqn{k}
#' value to flag (default is a sample size `S` dependend threshold
#' `1 - 1 / log10(S)`). For `mcse_loo()`, if any \eqn{k} estimates are
#' greater than `threshold` the MCSE estimate is returned as `NA`
#' See **Details** for the motivation behind these defaults.
#'
#' @details
#'
#' The reliability and approximate convergence rate of the PSIS-based
#' estimates can be assessed using the estimates for the shape
#' parameter \eqn{k} of the generalized Pareto distribution. The
#' diagnostic threshold for Pareto \eqn{k} depends on sample size
#' \eqn{S} (sample size dependent threshold was introduced by Vehtari
#' et al. (2024), and before that fixed thresholds of 0.5 and 0.7 were
#' recommended). For simplicity, `loo` package uses the nominal sample
#' size \eqn{S} when computing the sample size specific
#' threshold. This provides an optimistic threshold if the effective
#' sample size is less than 2200, but if MCMC-ESS > S/2 the difference
#' is usually negligible. Thinning of MCMC draws can be used to
#' improve the ratio ESS/S.
#'
#' * If \eqn{k < min(1 - 1 / log10(S), 0.7)}, where \eqn{S} is the
#' sample size, the PSIS estimate and the corresponding Monte Carlo
#' standard error estimate are reliable.
#'
#' * If \eqn{1 - 1 / log10(S) <= k < 0.7}, the PSIS estimate and the
#' corresponding Monte Carlo standard error estimate are not
#' reliable, but increasing the (effective) sample size \eqn{S} above
#' 2200 may help (this will increase the sample size specific
#' threshold \eqn{(1-1/log10(2200)>0.7} and then the bias specific
#' threshold 0.7 dominates).
#'
#' * If \eqn{0.7 <= k < 1}, the PSIS estimate and the corresponding Monte
#' Carlo standard error have large bias and are not reliable. Increasing
#' the sample size may reduce the variability in \eqn{k} estimate, which
#' may result in lower \eqn{k} estimate, too.
#'
#' * If \eqn{k \geq 1}{k >= 1}, the target distribution is estimated to
#' have a non-finite mean. The PSIS estimate and the corresponding Monte
#' Carlo standard error are not well defined. Increasing the sample size
#' may reduce the variability in the \eqn{k} estimate, which
#' may also result in a lower \eqn{k} estimate.
#'
#' \subsection{What if the estimated tail shape parameter \eqn{k}
#' exceeds the diagnostic threshold?}{ Importance sampling is likely to
#' work less well if the marginal posterior \eqn{p(\theta^s | y)} and
#' LOO posterior \eqn{p(\theta^s | y_{-i})} are very different, which
#' is more likely to happen with a non-robust model and highly
#' influential observations. If the estimated tail shape parameter
#' \eqn{k} exceeds the diagnostic threshold, the user should be
#' warned. (Note: If \eqn{k} is greater than the diagnostic threshold
#' then WAIC is also likely to fail, but WAIC lacks as accurate
#' diagnostic.) When using PSIS in the context of approximate LOO-CV,
#' we recommend one of the following actions:
#'
#' * With some additional computations, it is possible to transform
#' the MCMC draws from the posterior distribution to obtain more
#' reliable importance sampling estimates. This results in a smaller
#' shape parameter \eqn{k}. See [loo_moment_match()] and the
#' vignette *Avoiding model refits in leave-one-out cross-validation
#' with moment matching* for an example of this.
#'
#' * Sampling from a leave-one-out mixture distribution (see the
#' vignette *Mixture IS leave-one-out cross-validation for
#' high-dimensional Bayesian models*), directly from \eqn{p(\theta^s
#' | y_{-i})} for the problematic observations \eqn{i}, or using
#' \eqn{K}-fold cross-validation (see the vignette *Holdout
#' validation and K-fold cross-validation of Stan programs with the
#' loo package*) will generally be more stable.
#'
#' * Using a model that is more robust to anomalous observations will
#' generally make approximate LOO-CV more stable.
#'
#' }
#'
#' \subsection{Observation influence statistics}{ The estimated shape parameter
#' \eqn{k} for each observation can be used as a measure of the observation's
#' influence on posterior distribution of the model. These can be obtained with
#' `pareto_k_influence_values()`.
#' }
#'
#' \subsection{Effective sample size and error estimates}{ In the case that we
#' obtain the samples from the proposal distribution via MCMC the **loo**
#' package also computes estimates for the Monte Carlo error and the effective
#' sample size for importance sampling, which are more accurate for PSIS than
#' for IS and TIS (see Vehtari et al (2024) for details). However, the PSIS
#' effective sample size estimate will be
#' **over-optimistic when the estimate of \eqn{k} is greater than**
#' \eqn{min(1-1/log10(S), 0.7)}, where \eqn{S} is the sample size.
#' }
#'
#' @seealso
#' * [psis()] for the implementation of the PSIS algorithm.
#' * The [FAQ page](https://mc-stan.org/loo/articles/online-only/faq.html) on
#' the __loo__ website for answers to frequently asked questions.
#'
#' @template loo-and-psis-references
#'
NULL
#' @rdname pareto-k-diagnostic
#' @export
#' @return `pareto_k_table()` returns an object of class
#' `"pareto_k_table"`, which is a matrix with columns `"Count"`,
#' `"Proportion"`, and `"Min. n_eff"`, and has its own print method.
#'
pareto_k_table <- function(x) {
k <- pareto_k_values(x)
n_eff <- try(psis_n_eff_values(x), silent = TRUE)
if (inherits(n_eff, "try-error")) {
n_eff <- rep(NA, length(k))
}
S <- dim(x)[1]
k_threshold <- ps_khat_threshold(S)
kcut <- k_cut(k, k_threshold)
n_eff[k>k_threshold] <- NA
min_n_eff <- min_n_eff_by_k(n_eff, kcut)
count <- table(kcut)
out <- cbind(
Count = count,
Proportion = prop.table(count),
"Min. n_eff" = min_n_eff
)
attr(out, "k_threshold") <- k_threshold
structure(out, class = c("pareto_k_table", class(out)))
}
#' @export
print.pareto_k_table <- function(x, digits = 1, ...) {
count <- x[, "Count"]
k_threshold <- attr(x, "k_threshold")
if (sum(count[2:3]) == 0) {
cat(paste0("\nAll Pareto k estimates are good (k < ",
round(k_threshold,2), ").\n"))
} else {
tab <- cbind(
" " = rep("", 3),
" " = c("(good)", "(bad)", "(very bad)"),
"Count" = .fr(count, 0),
"Pct. " = paste0(.fr(100 * x[, "Proportion"], digits), "%"),
# Print ESS as n_eff terms has been deprecated
"Min. ESS" = round(x[, "Min. n_eff"])
)
tab2 <- rbind(tab)
cat("Pareto k diagnostic values:\n")
rownames(tab2) <- format(rownames(tab2), justify = "right")
print(tab2, quote = FALSE)
invisible(x)
}
}
#' @rdname pareto-k-diagnostic
#' @export
#' @return `pareto_k_ids()` returns an integer vector indicating which
#' observations have Pareto \eqn{k} estimates above `threshold`.
#'
pareto_k_ids <- function(x, threshold = NULL) {
if (is.null(threshold)) {
S <- dim(x)[1]
threshold <- ps_khat_threshold(S)
}
k <- pareto_k_values(x)
which(k > threshold)
}
#' @rdname pareto-k-diagnostic
#' @export
#' @return `pareto_k_values()` returns a vector of the estimated Pareto
#' \eqn{k} parameters. These represent the reliability of sampling.
pareto_k_values <- function(x) {
k <- x$diagnostics[["pareto_k"]]
if (is.null(k)) {
# for compatibility with objects from loo < 2.0.0
k <- x[["pareto_k"]]
}
if (is.null(k)) {
stop("No Pareto k estimates found.", call. = FALSE)
}
return(k)
}
#' @rdname pareto-k-diagnostic
#' @export
#' @return `pareto_k_influence_values()` returns a vector of the estimated Pareto
#' \eqn{k} parameters. These represent influence of the observations on the
#' model posterior distribution.
pareto_k_influence_values <- function(x) {
if ("influence_pareto_k" %in% colnames(x$pointwise)) {
k <- x$pointwise[,"influence_pareto_k"]
}
else {
stop("No Pareto k influence estimates found.", call. = FALSE)
}
return(k)
}
#' @rdname pareto-k-diagnostic
#' @export
#' @return `psis_n_eff_values()` returns a vector of the estimated PSIS
#' effective sample sizes.
psis_n_eff_values <- function(x) {
n_eff <- x$diagnostics[["n_eff"]]
if (is.null(n_eff)) {
# Print ESS as n_eff terms has been deprecated
stop("No PSIS ESS estimates found.", call. = FALSE)
}
return(n_eff)
}
#' @rdname pareto-k-diagnostic
#' @export
#' @return `mcse_loo()` returns the Monte Carlo standard error (MCSE)
#' estimate for PSIS-LOO. MCSE will be NA if any Pareto \eqn{k} values are
#' above `threshold`.
#'
mcse_loo <- function(x, threshold = NULL) {
stopifnot(is.psis_loo(x))
S <- dim(x)[1]
if (is.null(threshold)) {
k_threshold <- ps_khat_threshold(S)
} else {
k_threshold <- threshold
}
if (any(pareto_k_values(x) > k_threshold, na.rm = TRUE)) {
return(NA)
}
mc_var <- x$pointwise[, "mcse_elpd_loo"]^2
sqrt(sum(mc_var))
}
#' @rdname pareto-k-diagnostic
#' @aliases plot.loo
#' @export
#' @param label_points,... For the `plot()` method, if `label_points` is
#' `TRUE` the observation numbers corresponding to any values of \eqn{k}
#' greater than the diagnostic threshold will be displayed in the plot.
#' Any arguments specified in `...` will be passed to [graphics::text()]
#' and can be used to control the appearance of the labels.
#' @param diagnostic For the `plot` method, which diagnostic should be
#' plotted? The options are `"k"` for Pareto \eqn{k} estimates (the
#' default), or `"ESS"` or `"n_eff"` for PSIS effective sample size estimates.
#' @param main For the `plot()` method, a title for the plot.
#'
#' @return The `plot()` method is called for its side effect and does not
#' return anything. If `x` is the result of a call to [loo()]
#' or [psis()] then `plot(x, diagnostic)` produces a plot of
#' the estimates of the Pareto shape parameters (`diagnostic = "k"`) or
#' estimates of the PSIS effective sample sizes (`diagnostic = "ESS"`).
#'
plot.psis_loo <- function(x,
diagnostic = c("k", "ESS", "n_eff"),
...,
label_points = FALSE,
main = "PSIS diagnostic plot") {
diagnostic <- match.arg(diagnostic)
k <- pareto_k_values(x)
k[is.na(k)] <- 0 # FIXME when reloo is changed to make NA k values -Inf
k_inf <- !is.finite(k)
if (any(k_inf)) {
warning(signif(100 * mean(k_inf), 2),
"% of Pareto k estimates are Inf/NA/NaN and not plotted.")
}
if (diagnostic == "ESS" || diagnostic == "n_eff") {
n_eff <- psis_n_eff_values(x)
} else {
n_eff <- NULL
}
S <- dim(x)[1]
k_threshold <- ps_khat_threshold(S)
plot_diagnostic(
k = k,
n_eff = n_eff,
threshold = k_threshold,
...,
label_points = label_points,
main = main
)
}
#' @export
#' @noRd
#' @rdname pareto-k-diagnostic
plot.loo <- plot.psis_loo
#' @export
#' @rdname pareto-k-diagnostic
plot.psis <- function(x, diagnostic = c("k", "ESS", "n_eff"), ...,
label_points = FALSE,
main = "PSIS diagnostic plot") {
plot.psis_loo(x, diagnostic = diagnostic, ...,
label_points = label_points, main = main)
}
# internal ----------------------------------------------------------------
plot_diagnostic <-
function(k,
n_eff = NULL,
threshold = 0.7,
...,
label_points = FALSE,
main = "PSIS diagnostic plot") {
use_n_eff <- !is.null(n_eff)
graphics::plot(
x = if (use_n_eff) n_eff else k,
xlab = "Data point",
# Print ESS as n_eff terms has been deprecated
ylab = if (use_n_eff) "PSIS ESS" else "Pareto shape k",
type = "n",
bty = "l",
yaxt = "n",
main = main
)
graphics::axis(side = 2, las = 1)
in_range <- function(x, lb_ub) {
x >= lb_ub[1L] & x <= lb_ub[2L]
}
if (!use_n_eff) {
krange <- range(k, na.rm = TRUE)
breaks <- c(0, threshold, 1)
hex_clrs <- c("#C79999", "#7C0000")
ltys <- c(3, 2, 1)
for (j in seq_along(breaks)) {
val <- breaks[j]
if (in_range(val, krange))
graphics::abline(
h = val,
col = ifelse(val == 0, "darkgray", hex_clrs[j - 1]),
lty = ltys[j],
lwd = 1
)
}
}
breaks <- c(-Inf, threshold, 1)
hex_clrs <- c("#6497b1", "#005b96", "#03396c")
clrs <- ifelse(
in_range(k, breaks[1:2]),
hex_clrs[1],
ifelse(in_range(k, breaks[2:3]), hex_clrs[2], hex_clrs[3])
)
if (all(k < threshold) || !label_points) {
graphics::points(x = if (use_n_eff) n_eff else k,
col = clrs, pch = 3, cex = .6)
return(invisible())
} else {
graphics::points(x = which(k < threshold),
y = if (use_n_eff) n_eff[k < threshold] else k[k < threshold],
col = clrs[k < threshold], pch = 3, cex = .6)
sel <- !in_range(k, breaks[1:2])
dots <- list(...)
txt_args <- c(
list(
x = seq_along(k)[sel],
y = if (use_n_eff) n_eff[sel] else k[sel],
labels = seq_along(k)[sel]
),
if (length(dots)) dots
)
if (!("adj" %in% names(txt_args))) txt_args$adj <- 2 / 3
if (!("cex" %in% names(txt_args))) txt_args$cex <- 0.75
if (!("col" %in% names(txt_args))) txt_args$col <- clrs[sel]
do.call(graphics::text, txt_args)
}
}
#' Convert numeric Pareto k values to a factor variable.
#'
#' @noRd
#' @param k Vector of Pareto k estimates.
#' @return A factor variable (the same length as k) with 3 levels.
#'
k_cut <- function(k, threshold) {
cut(
k,
breaks = c(-Inf, threshold, 1, Inf),
labels = c(paste0("(-Inf, ", round(threshold,2), "]"),
paste0("(", round(threshold,2), ", 1]"),
"(1, Inf)")
)
}
#' Calculate the minimum PSIS n_eff within groups defined by Pareto k values
#'
#' @noRd
#' @param n_eff Vector of PSIS n_eff estimates.
#' @param kcut Factor returned by the k_cut() function.
#' @return Vector of length `nlevels(kcut)` containing the minimum n_eff within
#' each k group. If there are no k values in a group the corresponding element
#' of the returned vector is NA.
min_n_eff_by_k <- function(n_eff, kcut) {
n_eff_split <- split(n_eff, f = kcut)
n_eff_split <- sapply(n_eff_split, function(x) {
# some k groups might be empty.
# split gives numeric(0) but replace with NA
if (!length(x)) NA else x
})
sapply(n_eff_split, min)
}
#' Pareto-smoothing k-hat threshold
#'
#' Given sample size S computes khat threshold for reliable Pareto
#' smoothed estimate (to have small probability of large error). See
#' section 3.2.4, equation (13). Sample sizes 100, 320, 1000, 2200,
#' 10000 correspond to thresholds 0.5, 0.6, 0.67, 0.7, 0.75. Although
#' with bigger sample size S we can achieve estimates with small
#' probability of large error, it is difficult to get accurate MCSE
#' estimates as the bias starts to dominate when k > 0.7 (see Section 3.2.3).
#' Thus the sample size dependend k-ht threshold is capped at 0.7.
#' @param S sample size
#' @param ... unused
#' @return threshold
#' @noRd
ps_khat_threshold <- function(S, ...) {
min(1 - 1 / log10(S), 0.7)
}
|