File: effective_sample_sizes.R

package info (click to toggle)
r-cran-loo 2.9.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 4,836 kB
  • sloc: sh: 15; makefile: 2
file content (194 lines) | stat: -rw-r--r-- 5,876 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#' Convenience function for computing relative efficiencies
#'
#' `relative_eff()` computes the the MCMC effective sample size divided by
#' the total sample size.
#'
#' @export
#' @param x A vector, matrix, 3-D array, or function. See the **Methods (by
#'   class)** section below for details on specifying `x`, but where
#'   "log-likelihood" is mentioned replace it with one of the following
#'   depending on the use case:
#'   * For use with the [loo()] function, the values in `x` (or generated by
#'     `x`, if a function) should be **likelihood** values
#'     (i.e., `exp(log_lik)`), not on the log scale.
#'   * For generic use with [psis()], the values in `x` should be the reciprocal
#'     of the importance ratios (i.e., `exp(-log_ratios)`).
#' @param chain_id A vector of length `NROW(x)` containing MCMC chain
#'   indexes for each each row of `x` (if a matrix) or each value in
#'   `x` (if a vector). No `chain_id` is needed if `x` is a 3-D
#'   array. If there are `C` chains then valid chain indexes are values
#'   in `1:C`.
#' @param cores The number of cores to use for parallelization.
#' @return A vector of relative effective sample sizes.
#'
#' @examples
#' LLarr <- example_loglik_array()
#' LLmat <- example_loglik_matrix()
#' dim(LLarr)
#' dim(LLmat)
#'
#' rel_n_eff_1 <- relative_eff(exp(LLarr))
#' rel_n_eff_2 <- relative_eff(exp(LLmat), chain_id = rep(1:2, each = 500))
#' all.equal(rel_n_eff_1, rel_n_eff_2)
#'
relative_eff <- function(x, ...) {
  UseMethod("relative_eff")
}

#' @export
#' @templateVar fn relative_eff
#' @template vector
#'
relative_eff.default <- function(x, chain_id, ...) {
  dim(x) <- c(length(x), 1)
  class(x) <- "matrix"
  relative_eff.matrix(x, chain_id)
}

#' @export
#' @templateVar fn relative_eff
#' @template matrix
#'
relative_eff.matrix <- function(x, chain_id, ..., cores = getOption("mc.cores", 1)) {
  x <- llmatrix_to_array(x, chain_id)
  relative_eff.array(x, cores = cores)
}

#' @export
#' @templateVar fn relative_eff
#' @template array
#'
relative_eff.array <- function(x, ..., cores = getOption("mc.cores", 1)) {
  stopifnot(length(dim(x)) == 3)
  S <- prod(dim(x)[1:2]) # posterior sample size = iter * chains

  if (cores == 1) {
    n_eff_vec <- apply(x, 3, posterior::ess_mean)
  } else {
    if (!os_is_windows()) {
      n_eff_list <-
        parallel::mclapply(
          mc.cores = cores,
          X = seq_len(dim(x)[3]),
          FUN = function(i) posterior::ess_mean(x[, , i, drop = TRUE])
        )
    } else {
      cl <- parallel::makePSOCKcluster(cores)
      on.exit(parallel::stopCluster(cl))
      n_eff_list <-
        parallel::parLapply(
          cl = cl,
          X = seq_len(dim(x)[3]),
          fun = function(i) posterior::ess_mean(x[, , i, drop = TRUE])
        )
    }
    n_eff_vec <- unlist(n_eff_list, use.names = FALSE)
  }

  return(n_eff_vec / S)
}

#' @export
#' @templateVar fn relative_eff
#' @template function
#' @param data,draws,... Same as for the [loo()] function method.
#'
relative_eff.function <-
  function(x,
           chain_id,
           ...,
           cores = getOption("mc.cores", 1),
           data = NULL,
           draws = NULL) {

    f_i <- validate_llfun(x) # not really an llfun, should return exp(ll) or exp(-ll)
    N <- dim(data)[1]

    if (cores == 1) {
      n_eff_list <-
        lapply(
          X = seq_len(N),
          FUN = function(i) {
            val_i <- f_i(data_i = data[i, , drop = FALSE], draws = draws, ...)
            relative_eff.default(as.vector(val_i), chain_id = chain_id, cores = 1)
          }
        )
    } else {
      if (!os_is_windows()) {
        n_eff_list <-
          parallel::mclapply(
            X = seq_len(N),
            FUN = function(i) {
              val_i <- f_i(data_i = data[i, , drop = FALSE], draws = draws, ...)
              relative_eff.default(as.vector(val_i), chain_id = chain_id, cores = 1)
            },
            mc.cores = cores
          )
      } else {
        cl <- parallel::makePSOCKcluster(cores)
        parallel::clusterExport(cl=cl, varlist=c("draws", "chain_id", "data"), envir=environment())
        on.exit(parallel::stopCluster(cl))
        n_eff_list <-
          parallel::parLapply(
            cl = cl,
            X = seq_len(N),
            fun = function(i) {
              val_i <- f_i(data_i = data[i, , drop = FALSE], draws = draws, ...)
              relative_eff.default(as.vector(val_i), chain_id = chain_id, cores = 1)
            }
          )
      }
    }

    n_eff_vec <- unlist(n_eff_list, use.names = FALSE)
    return(n_eff_vec)
  }

#' @export
#' @describeIn relative_eff
#'   If `x` is an object of class `"psis"`, `relative_eff()` simply returns
#'   the `r_eff` attribute of `x`.
relative_eff.importance_sampling <- function(x, ...) {
  attr(x, "r_eff")
}


# internal ----------------------------------------------------------------


#' Effective sample size for PSIS
#'
#' @noRd
#' @param w A vector or matrix (one column per observation) of normalized Pareto
#'   smoothed weights (not log weights).
#' @param r_eff Relative effective sample size of `exp(log_lik)` or
#'   `exp(-log_ratios)`. `r_eff` should be a scalar if `w` is a
#'   vector and a vector of length `ncol(w)` if `w` is a matrix.
#' @return A scalar if `w` is a vector. A vector of length `ncol(w)`
#'   if `w` is matrix.
#'
psis_n_eff <- function(w, ...) {
  UseMethod("psis_n_eff")
}

#' @export
psis_n_eff.default <- function(w, r_eff = NULL, ...) {
  ss <- sum(w^2)
  if (is.null(r_eff)) {
    return(1 / ss)
  }
  stopifnot(length(r_eff) == 1)
  1 / ss * r_eff
}

#' @export
psis_n_eff.matrix <- function(w, r_eff = NULL, ...) {
  ss <- colSums(w^2)
  if (is.null(r_eff)) {
    return(1 / ss)
  }
  if (length(r_eff) != length(ss) && length(r_eff) != 1) {
    stop("r_eff must have length 1 or ncol(w).", call. = FALSE)
  }
  1 / ss * r_eff
}