1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
|
#' Efficient approximate leave-one-out cross-validation (LOO)
#'
#' The `loo()` methods for arrays, matrices, and functions compute PSIS-LOO
#' CV, efficient approximate leave-one-out (LOO) cross-validation for Bayesian
#' models using Pareto smoothed importance sampling ([PSIS][psis()]). This is
#' an implementation of the methods described in Vehtari, Gelman, and Gabry
#' (2017) and Vehtari, Simpson, Gelman, Yao, and Gabry (2024).
#'
#' @export loo loo.array loo.matrix loo.function
#' @param x A log-likelihood array, matrix, or function. The **Methods (by class)**
#' section, below, has detailed descriptions of how to specify the inputs for
#' each method.
#' @param r_eff Vector of relative effective sample size estimates for the
#' likelihood (`exp(log_lik)`) of each observation. This is related to
#' the relative efficiency of estimating the normalizing term in
#' self-normalized importance sampling when using posterior draws obtained
#' with MCMC. If MCMC draws are used and `r_eff` is not provided then
#' the reported PSIS effective sample sizes and Monte Carlo error estimates
#' can be over-optimistic. If the posterior draws are (near) independent then
#' `r_eff=1` can be used. `r_eff` has to be a scalar (same value is used
#' for all observations) or a vector with length equal to the number of
#' observations. The default value is 1. See the [relative_eff()] helper
#' functions for help computing `r_eff`.
#' @param save_psis Should the `psis` object created internally by `loo()` be
#' saved in the returned object? The `loo()` function calls [psis()]
#' internally but by default discards the (potentially large) `psis` object
#' after using it to compute the LOO-CV summaries. Setting `save_psis=TRUE`
#' will add a `psis_object` component to the list returned by `loo`.
#' This is useful if you plan to use the [E_loo()] function to compute
#' weighted expectations after running `loo`. Several functions in the
#' \pkg{bayesplot} package also accept `psis` objects.
#' @template cores
#' @template is_method
#'
#' @details The `loo()` function is an S3 generic and methods are provided for
#' 3-D pointwise log-likelihood arrays, pointwise log-likelihood matrices, and
#' log-likelihood functions. The array and matrix methods are the most
#' convenient, but for models fit to very large datasets the `loo.function()`
#' method is more memory efficient and may be preferable.
#'
#' @section Defining `loo()` methods in a package: Package developers can define
#' `loo()` methods for fitted models objects. See the example `loo.stanfit()`
#' method in the **Examples** section below for an example of defining a
#' method that calls `loo.array()`. The `loo.stanreg()` method in the
#' **rstanarm** package is an example of defining a method that calls
#' `loo.function()`.
#'
#' @return The `loo()` methods return a named list with class
#' `c("psis_loo", "loo")` and components:
#' \describe{
#' \item{`estimates`}{
#' A matrix with two columns (`Estimate`, `SE`) and three rows (`elpd_loo`,
#' `p_loo`, `looic`). This contains point estimates and standard errors of the
#' expected log pointwise predictive density ([`elpd_loo`][loo-glossary]), the
#' effective number of parameters ([`p_loo`][loo-glossary]) and the LOO
#' information criterion `looic` (which is just `-2 * elpd_loo`, i.e.,
#' converted to deviance scale).
#' }
#'
#' \item{`pointwise`}{
#' A matrix with five columns (and number of rows equal to the number of
#' observations) containing the pointwise contributions of the measures
#' (`elpd_loo`, `mcse_elpd_loo`, `p_loo`, `looic`, `influence_pareto_k`).
#' in addition to the three measures in `estimates`, we also report
#' pointwise values of the Monte Carlo standard error of [`elpd_loo`][loo-glossary]
#' ([`mcse_elpd_loo`][loo-glossary]), and statistics describing the influence of
#' each observation on the posterior distribution (`influence_pareto_k`).
#' These are the estimates of the shape parameter \eqn{k} of the
#' generalized Pareto fit to the importance ratios for each leave-one-out
#' distribution (see the [pareto-k-diagnostic] page for details).
#' }
#'
#' \item{`diagnostics`}{
#' A named list containing two vectors:
#' * `pareto_k`: Importance sampling reliability diagnostics. By default,
#' these are equal to the `influence_pareto_k` in `pointwise`.
#' Some algorithms can improve importance sampling reliability and
#' modify these diagnostics. See the [pareto-k-diagnostic] page for details.
#' * `n_eff`: PSIS effective sample size estimates.
#' }
#'
#' \item{`psis_object`}{
#' This component will be `NULL` unless the `save_psis` argument is set to
#' `TRUE` when calling `loo()`. In that case `psis_object` will be the object
#' of class `"psis"` that is created when the `loo()` function calls [psis()]
#' internally to do the PSIS procedure.
#' }
#' }
#'
#' @seealso
#' * The __loo__ package [vignettes](https://mc-stan.org/loo/articles/index.html)
#' for demonstrations.
#' * The [FAQ page](https://mc-stan.org/loo/articles/online-only/faq.html) on
#' the __loo__ website for answers to frequently asked questions.
#' * [psis()] for the underlying Pareto Smoothed Importance Sampling (PSIS)
#' procedure used in the LOO-CV approximation.
#' * [pareto-k-diagnostic] for convenience functions for looking at diagnostics.
#' * [loo_compare()] for model comparison.
#'
#' @template loo-and-psis-references
#'
#' @examples
#' ### Array and matrix methods (using example objects included with loo package)
#' # Array method
#' LLarr <- example_loglik_array()
#' rel_n_eff <- relative_eff(exp(LLarr))
#' loo(LLarr, r_eff = rel_n_eff, cores = 2)
#'
#' # Matrix method
#' LLmat <- example_loglik_matrix()
#' rel_n_eff <- relative_eff(exp(LLmat), chain_id = rep(1:2, each = 500))
#' loo(LLmat, r_eff = rel_n_eff, cores = 2)
#'
#'
#' ### Using log-likelihood function instead of array or matrix
#' set.seed(124)
#'
#' # Simulate data and draw from posterior
#' N <- 50; K <- 10; S <- 100; a0 <- 3; b0 <- 2
#' p <- rbeta(1, a0, b0)
#' y <- rbinom(N, size = K, prob = p)
#' a <- a0 + sum(y); b <- b0 + N * K - sum(y)
#' fake_posterior <- as.matrix(rbeta(S, a, b))
#' dim(fake_posterior) # S x 1
#' fake_data <- data.frame(y,K)
#' dim(fake_data) # N x 2
#'
#' llfun <- function(data_i, draws) {
#' # each time called internally within loo the arguments will be equal to:
#' # data_i: ith row of fake_data (fake_data[i,, drop=FALSE])
#' # draws: entire fake_posterior matrix
#' dbinom(data_i$y, size = data_i$K, prob = draws, log = TRUE)
#' }
#'
#' # Use the loo_i function to check that llfun works on a single observation
#' # before running on all obs. For example, using the 3rd obs in the data:
#' loo_3 <- loo_i(i = 3, llfun = llfun, data = fake_data, draws = fake_posterior)
#' print(loo_3$pointwise[, "elpd_loo"])
#'
#' # Use loo.function method (default r_eff=1 is used as this posterior not obtained via MCMC)
#' loo_with_fn <- loo(llfun, draws = fake_posterior, data = fake_data)
#'
#' # If we look at the elpd_loo contribution from the 3rd obs it should be the
#' # same as what we got above with the loo_i function and i=3:
#' print(loo_with_fn$pointwise[3, "elpd_loo"])
#' print(loo_3$pointwise[, "elpd_loo"])
#'
#' # Check that the loo.matrix method gives same answer as loo.function method
#' log_lik_matrix <- sapply(1:N, function(i) {
#' llfun(data_i = fake_data[i,, drop=FALSE], draws = fake_posterior)
#' })
#' loo_with_mat <- loo(log_lik_matrix)
#' all.equal(loo_with_mat$estimates, loo_with_fn$estimates) # should be TRUE!
#'
#'
#' \dontrun{
#' ### For package developers: defining loo methods
#'
#' # An example of a possible loo method for 'stanfit' objects (rstan package).
#' # A similar method is included in the rstan package.
#' # In order for users to be able to call loo(stanfit) instead of
#' # loo.stanfit(stanfit) the NAMESPACE needs to be handled appropriately
#' # (roxygen2 and devtools packages are good for that).
#' #
#' loo.stanfit <-
#' function(x,
#' pars = "log_lik",
#' ...,
#' save_psis = FALSE,
#' cores = getOption("mc.cores", 1)) {
#' stopifnot(length(pars) == 1L)
#' LLarray <- loo::extract_log_lik(stanfit = x,
#' parameter_name = pars,
#' merge_chains = FALSE)
#' r_eff <- loo::relative_eff(x = exp(LLarray), cores = cores)
#' loo::loo.array(LLarray,
#' r_eff = r_eff,
#' cores = cores,
#' save_psis = save_psis)
#' }
#' }
#'
#'
loo <- function(x, ...) {
UseMethod("loo")
}
#' @export
#' @templateVar fn loo
#' @template array
#'
loo.array <-
function(x,
...,
r_eff = 1,
save_psis = FALSE,
cores = getOption("mc.cores", 1),
is_method = c("psis", "tis", "sis")) {
is_method <- match.arg(is_method)
psis_out <- importance_sampling.array(log_ratios = -x, r_eff = r_eff, cores = cores, method = is_method)
ll <- llarray_to_matrix(x)
pointwise <- pointwise_loo_calcs(ll, psis_out)
importance_sampling_loo_object(
pointwise = pointwise,
diagnostics = psis_out$diagnostics,
dims = dim(psis_out),
is_method = is_method,
is_object = if (save_psis) psis_out else NULL
)
}
#' @export
#' @templateVar fn loo
#' @template matrix
#'
loo.matrix <-
function(x,
...,
r_eff = 1,
save_psis = FALSE,
cores = getOption("mc.cores", 1),
is_method = c("psis", "tis", "sis")) {
is_method <- match.arg(is_method)
psis_out <-
importance_sampling.matrix(
log_ratios = -x,
r_eff = r_eff,
cores = cores,
method = is_method
)
pointwise <- pointwise_loo_calcs(x, psis_out)
importance_sampling_loo_object(
pointwise = pointwise,
diagnostics = psis_out$diagnostics,
dims = dim(psis_out),
is_method = is_method,
is_object = if (save_psis) psis_out else NULL
)
}
#' @export
#' @templateVar fn loo
#' @template function
#' @param data,draws,... For the `loo.function()` method and the `loo_i()`
#' function, these are the data, posterior draws, and other arguments to pass
#' to the log-likelihood function. See the **Methods (by class)** section
#' below for details on how to specify these arguments.
#'
loo.function <-
function(x,
...,
data = NULL,
draws = NULL,
r_eff = 1,
save_psis = FALSE,
cores = getOption("mc.cores", 1),
is_method = c("psis", "tis", "sis")) {
is_method <- match.arg(is_method)
cores <- loo_cores(cores)
stopifnot(is.data.frame(data) || is.matrix(data), !is.null(draws))
assert_importance_sampling_method_is_implemented(is_method)
.llfun <- validate_llfun(x)
N <- dim(data)[1]
r_eff <- prepare_psis_r_eff(r_eff, len = N)
psis_list <-
parallel_importance_sampling_list(
N = N,
.loo_i = .loo_i,
.llfun = .llfun,
data = data,
draws = draws,
r_eff = r_eff,
save_psis = save_psis,
cores = cores,
method = is_method,
...
)
pointwise <- lapply(psis_list, "[[", "pointwise")
if (save_psis) {
psis_object_list <- lapply(psis_list, "[[", "psis_object")
psis_out <- list2importance_sampling(psis_object_list)
diagnostics <- psis_out$diagnostics
} else {
diagnostics_list <- lapply(psis_list, "[[", "diagnostics")
diagnostics <- list(
pareto_k = psis_apply(diagnostics_list, "pareto_k"),
n_eff = psis_apply(diagnostics_list, "n_eff"),
r_eff = psis_apply(diagnostics_list, "r_eff")
)
}
importance_sampling_loo_object(
pointwise = do.call(rbind, pointwise),
diagnostics = diagnostics,
dims = c(attr(psis_list[[1]], "S"), N),
is_method = is_method,
is_object = if (save_psis) psis_out else NULL
)
}
#' @description The `loo_i()` function enables testing log-likelihood
#' functions for use with the `loo.function()` method.
#'
#' @rdname loo
#' @export
#'
#' @param i For `loo_i()`, an integer in `1:N`.
#' @param llfun For `loo_i()`, the same as `x` for the
#' `loo.function()` method. A log-likelihood function as described in the
#' **Methods (by class)** section.
#'
#' @return The `loo_i()` function returns a named list with components
#' `pointwise` and `diagnostics`. These components have the same
#' structure as the `pointwise` and `diagnostics` components of the
#' object returned by `loo()` except they contain results for only a single
#' observation.
#'
loo_i <-
function(i,
llfun,
...,
data = NULL,
draws = NULL,
r_eff = 1,
is_method = "psis"
) {
stopifnot(
i == as.integer(i),
is.function(llfun) || is.character(llfun),
is.data.frame(data) || is.matrix(data),
i <= dim(data)[1],
!is.null(draws),
is_method %in% implemented_is_methods()
)
.loo_i(
i = as.integer(i),
llfun = match.fun(llfun),
data = data,
draws = draws,
r_eff = r_eff[i],
save_psis = FALSE,
is_method = is_method,
...
)
}
# Function that is passed to the FUN argument of lapply, mclapply, or parLapply
# for the loo.function method. The arguments and return value are the same as
# the ones documented above for the user-facing loo_i function.
.loo_i <-
function(i,
llfun,
...,
data,
draws,
r_eff = 1,
save_psis = FALSE,
is_method) {
if (!is.null(r_eff)) {
r_eff <- r_eff[i]
}
d_i <- data[i, , drop = FALSE]
ll_i <- llfun(data_i = d_i, draws = draws, ...)
if (!is.matrix(ll_i)) {
ll_i <- as.matrix(ll_i)
}
psis_out <-
importance_sampling.matrix(
log_ratios = -ll_i,
r_eff = r_eff,
cores = 1,
method = is_method
)
structure(
list(
pointwise = pointwise_loo_calcs(ll_i, psis_out),
diagnostics = psis_out$diagnostics,
psis_object = if (save_psis) psis_out else NULL
),
S = dim(psis_out)[1],
N = 1
)
}
#' @export
dim.loo <- function(x) {
attr(x, "dims")
}
#' @rdname loo
#' @export
is.loo <- function(x) {
inherits(x, "loo")
}
#' @export
dim.psis_loo <- function(x) {
attr(x, "dims")
}
#' @rdname loo
#' @export
is.psis_loo <- function(x) {
inherits(x, "psis_loo") && is.loo(x)
}
# internal ----------------------------------------------------------------
#' Compute pointwise elpd_loo, p_loo, looic from log lik matrix and
#' psis log weights
#'
#' @noRd
#' @param ll Log-likelihood matrix.
#' @param psis_object The object returned by `psis()`.
#' @return Named list with pointwise elpd_loo, mcse_elpd_loo, p_loo, looic,
#' and influence_pareto_k.
#'
pointwise_loo_calcs <- function(ll, psis_object) {
if (!is.matrix(ll)) {
ll <- as.matrix(ll)
}
lw <- weights(psis_object, normalize = TRUE, log = TRUE)
elpd_loo <- matrixStats::colLogSumExps(ll + lw)
lpd <- matrixStats::colLogSumExps(ll) - log(nrow(ll)) # colLogMeanExps
p_loo <- lpd - elpd_loo
mcse_elpd_loo <- mcse_elpd(ll, lw, E_elpd = elpd_loo, r_eff = relative_eff(psis_object))
looic <- -2 * elpd_loo
influence_pareto_k <- psis_object$diagnostics$pareto_k
cbind(elpd_loo, mcse_elpd_loo, p_loo, looic, influence_pareto_k)
}
#' Structure the object returned by the loo methods
#'
#' @noRd
#' @param pointwise Matrix containing columns elpd_loo, mcse_elpd_loo, p_loo,
#' looic, influence_pareto_k.
#' @param diagnostics Named list containing vector `pareto_k` and vector `n_eff`.
#' @param dims Log likelihood matrix dimensions (attribute of `"psis"` object).
#' @template is_method
#' @param is_object An object of class `"psis"/"tis"/"sis"`, as returned by the `psis()`/`tis()`/`sis()` function.
#' @return A `'importance_sampling_loo'` object as described in the Value section of the [loo()]
#' function documentation.
#'
importance_sampling_loo_object <- function(pointwise, diagnostics, dims,
is_method, is_object = NULL) {
if (!is.matrix(pointwise)) stop("Internal error ('pointwise' must be a matrix)")
if (!is.list(diagnostics)) stop("Internal error ('diagnostics' must be a list)")
assert_importance_sampling_method_is_implemented(is_method)
cols_to_summarize <- !(colnames(pointwise) %in% c("mcse_elpd_loo", "influence_pareto_k"))
estimates <- table_of_estimates(pointwise[, cols_to_summarize, drop=FALSE])
out <- nlist(estimates, pointwise, diagnostics)
if (is.null(is_object)) {
out[paste0(is_method, "_object")] <- list(NULL)
} else {
out[[paste0(is_method, "_object")]] <- is_object
}
# maintain backwards compatibility
old_nms <- c("elpd_loo", "p_loo", "looic", "se_elpd_loo", "se_p_loo", "se_looic")
out <- c(out, setNames(as.list(estimates), old_nms))
structure(
out,
dims = dims,
class = c(paste0(is_method, "_loo"), "importance_sampling_loo", "loo")
)
}
#' Compute Monte Carlo standard error for ELPD
#'
#' @noRd
#' @param ll Log-likelihood matrix.
#' @param E_elpd elpd_loo column of pointwise matrix.
#' @param psis_object Object returned by [psis()].
#' @param n_samples Deprecated
#' @return Vector of standard error estimates.
#'
mcse_elpd <- function(ll, lw, E_elpd, r_eff, n_samples = NULL) {
lik <- exp(ll)
w2 <- exp(lw)^2
E_epd <- exp(E_elpd)
if (length(r_eff) == 1 && !is.null(ncol(ll))) {
r_eff <- rep(r_eff, ncol(ll))
}
var_elpd <-
vapply(
seq_len(ncol(w2)),
FUN.VALUE = numeric(1),
FUN = function(i) {
# Variance in linear scale
# Equation (6) in Vehtari et al. (2024)
var_epd_i <- sum(w2[, i] * (lik[, i] - E_epd[i]) ^ 2) / r_eff[i]
# Compute variance in log scale by match the variance of a
# log-normal approximation
# https://en.wikipedia.org/wiki/Log-normal_distribution#Arithmetic_moments
log(1 + var_epd_i / E_epd[i]^2)
}
)
sqrt(var_elpd)
}
#' Warning message if r_eff not specified
#' @noRd
throw_loo_r_eff_warning <- function() {
warning(
"Relative effective sample sizes ('r_eff' argument) not specified.\n",
"For models fit with MCMC, the reported PSIS ESS and \n",
"MCSE estimates can be over-optimistic.",
call. = FALSE
)
}
#' Combine many psis objects into a single psis object
#'
#' @noRd
#' @param objects List of `"psis"` objects, each for a single observation.
#' @return A single `"psis"` object.
#'
list2importance_sampling <- function(objects) {
log_weights <- sapply(objects, "[[", "log_weights")
diagnostics <- lapply(objects, "[[", "diagnostics")
method <- psis_apply(objects, "method", fun = "attr", fun_val = character(1))
methods <- unique(method)
if (length(methods) == 1) {
method <- methods
classes <- c(methods, "importance_sampling", "list")
} else {
classes <- c("importance_sampling", "list")
}
structure(
list(
log_weights = log_weights,
diagnostics = list(
pareto_k = psis_apply(diagnostics, item = "pareto_k"),
n_eff = psis_apply(diagnostics, item = "n_eff"),
r_eff = psis_apply(diagnostics, item = "r_eff")
)
),
norm_const_log = psis_apply(objects, "norm_const_log", fun = "attr"),
tail_len = psis_apply(objects, "tail_len", fun = "attr"),
r_eff = psis_apply(objects, "r_eff", fun = "attr"),
dims = dim(log_weights),
method = method,
class = classes
)
}
#' Extractor methods
#'
#' These are only defined in order to deprecate with a warning (rather than
#' remove and break backwards compatibility) the old way of accessing the point
#' estimates in a `"psis_loo"` or `"psis"` object. The new way as of
#' v2.0.0 is to get them from the `"estimates"` component of the object.
#'
#' @name old-extractors
#' @keywords internal
#' @param x,i,exact,name See \link{Extract}.
#'
NULL
#' @rdname old-extractors
#' @keywords internal
#' @export
`[.loo` <- function(x, i) {
flags <- c("elpd_loo", "se_elpd_loo", "p_loo", "se_p_loo", "looic", "se_looic",
"elpd_waic", "se_elpd_waic", "p_waic", "se_p_waic", "waic", "se_waic")
if (is.character(i)) {
needs_warning <- which(flags == i)
if (length(needs_warning)) {
warning(
"Accessing ", flags[needs_warning], " using '[' is deprecated ",
"and will be removed in a future release. ",
"Please extract the ", flags[needs_warning],
" estimate from the 'estimates' component instead.",
call. = FALSE
)
}
}
NextMethod()
}
#' @rdname old-extractors
#' @keywords internal
#' @export
`[[.loo` <- function(x, i, exact=TRUE) {
flags <- c("elpd_loo", "se_elpd_loo", "p_loo", "se_p_loo", "looic", "se_looic",
"elpd_waic", "se_elpd_waic", "p_waic", "se_p_waic", "waic", "se_waic")
if (is.character(i)) {
needs_warning <- which(flags == i)
if (length(needs_warning)) {
warning(
"Accessing ", flags[needs_warning], " using '[[' is deprecated ",
"and will be removed in a future release. ",
"Please extract the ", flags[needs_warning],
" estimate from the 'estimates' component instead.",
call. = FALSE
)
}
}
NextMethod()
}
#' @rdname old-extractors
#' @keywords internal
#' @export
#'
`$.loo` <- function(x, name) {
flags <- c("elpd_loo", "se_elpd_loo", "p_loo", "se_p_loo", "looic", "se_looic",
"elpd_waic", "se_elpd_waic", "p_waic", "se_p_waic", "waic", "se_waic")
needs_warning <- which(flags == name)
if (length(needs_warning)) {
warning(
"Accessing ", flags[needs_warning], " using '$' is deprecated ",
"and will be removed in a future release. ",
"Please extract the ", flags[needs_warning],
" estimate from the 'estimates' component instead.",
call. = FALSE
)
}
NextMethod()
}
#' Parallel psis list computations
#'
#' @details Refactored function to handle parallel computations
#' for psis_list
#'
#' @keywords internal
#' @inheritParams loo.function
#' @param .loo_i The function used to compute individual loo contributions.
#' @param .llfun See `llfun` in [loo.function()].
#' @param N The total number of observations (i.e. `nrow(data)`).
#' @param method See `is_method` for [loo()]
#'
parallel_psis_list <- function(N, .loo_i, .llfun,
data, draws, r_eff,
save_psis, cores,
...){
parallel_importance_sampling_list(N, .loo_i, .llfun,
data, draws, r_eff,
save_psis, cores,
method = "psis", ...)
}
#' @rdname parallel_psis_list
parallel_importance_sampling_list <- function(N, .loo_i, .llfun,
data, draws, r_eff,
save_psis, cores,
method, ...){
if (cores == 1) {
psis_list <-
lapply(
X = seq_len(N),
FUN = .loo_i,
llfun = .llfun,
data = data,
draws = draws,
r_eff = r_eff,
save_psis = save_psis,
is_method = method,
...
)
} else {
if (!os_is_windows()) {
# On Mac or Linux use mclapply() for multiple cores
psis_list <-
parallel::mclapply(
mc.cores = cores,
X = seq_len(N),
FUN = .loo_i,
llfun = .llfun,
data = data,
draws = draws,
r_eff = r_eff,
save_psis = save_psis,
is_method = method,
...
)
} else {
# On Windows use makePSOCKcluster() and parLapply() for multiple cores
cl <- parallel::makePSOCKcluster(cores)
on.exit(parallel::stopCluster(cl))
psis_list <-
parallel::parLapply(
cl = cl,
X = seq_len(N),
fun = .loo_i,
llfun = .llfun,
data = data,
draws = draws,
r_eff = r_eff,
save_psis = save_psis,
is_method = method,
...
)
}
}
}
|