1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
|
#' Model comparison
#'
#' @description Compare fitted models based on [ELPD][loo-glossary].
#'
#' By default the print method shows only the most important information. Use
#' `print(..., simplify=FALSE)` to print a more detailed summary.
#'
#' @export
#' @param x An object of class `"loo"` or a list of such objects. If a list is
#' used then the list names will be used as the model names in the output. See
#' **Examples**.
#' @param ... Additional objects of class `"loo"`, if not passed in as a single
#' list.
#'
#' @return A matrix with class `"compare.loo"` that has its own
#' print method. See the **Details** section.
#'
#' @details
#' When comparing two fitted models, we can estimate the difference in their
#' expected predictive accuracy by the difference in
#' [`elpd_loo`][loo-glossary] or `elpd_waic` (or multiplied by \eqn{-2}, if
#' desired, to be on the deviance scale).
#'
#' When using `loo_compare()`, the returned matrix will have one row per model
#' and several columns of estimates. The values in the
#' [`elpd_diff`][loo-glossary] and [`se_diff`][loo-glossary] columns of the
#' returned matrix are computed by making pairwise comparisons between each
#' model and the model with the largest ELPD (the model in the first row). For
#' this reason the `elpd_diff` column will always have the value `0` in the
#' first row (i.e., the difference between the preferred model and itself) and
#' negative values in subsequent rows for the remaining models.
#'
#' To compute the standard error of the difference in [ELPD][loo-glossary] ---
#' which should not be expected to equal the difference of the standard errors
#' --- we use a paired estimate to take advantage of the fact that the same
#' set of \eqn{N} data points was used to fit both models. These calculations
#' should be most useful when \eqn{N} is large, because then non-normality of
#' the distribution is not such an issue when estimating the uncertainty in
#' these sums. These standard errors, for all their flaws, should give a
#' better sense of uncertainty than what is obtained using the current
#' standard approach of comparing differences of deviances to a Chi-squared
#' distribution, a practice derived for Gaussian linear models or
#' asymptotically, and which only applies to nested models in any case.
#' Sivula et al. (2022) discuss the conditions when the normal
#' approximation used for SE and `se_diff` is good.
#'
#' If more than \eqn{11} models are compared, we internally recompute the model
#' differences using the median model by ELPD as the baseline model. We then
#' estimate whether the differences in predictive performance are potentially
#' due to chance as described by McLatchie and Vehtari (2023). This will flag
#' a warning if it is deemed that there is a risk of over-fitting due to the
#' selection process. In that case users are recommended to avoid model
#' selection based on LOO-CV, and instead to favor model averaging/stacking or
#' projection predictive inference.
#'
#' @seealso
#' * The [FAQ page](https://mc-stan.org/loo/articles/online-only/faq.html) on
#' the __loo__ website for answers to frequently asked questions.
#' @template loo-and-compare-references
#'
#' @examples
#' # very artificial example, just for demonstration!
#' LL <- example_loglik_array()
#' loo1 <- loo(LL) # should be worst model when compared
#' loo2 <- loo(LL + 1) # should be second best model when compared
#' loo3 <- loo(LL + 2) # should be best model when compared
#'
#' comp <- loo_compare(loo1, loo2, loo3)
#' print(comp, digits = 2)
#'
#' # show more details with simplify=FALSE
#' # (will be the same for all models in this artificial example)
#' print(comp, simplify = FALSE, digits = 3)
#'
#' # can use a list of objects with custom names
#' # will use apple, banana, and cherry, as the names in the output
#' loo_compare(list("apple" = loo1, "banana" = loo2, "cherry" = loo3))
#'
#' \dontrun{
#' # works for waic (and kfold) too
#' loo_compare(waic(LL), waic(LL - 10))
#' }
#'
loo_compare <- function(x, ...) {
UseMethod("loo_compare")
}
#' @rdname loo_compare
#' @export
loo_compare.default <- function(x, ...) {
if (is.loo(x)) {
dots <- list(...)
loos <- c(list(x), dots)
} else {
if (!is.list(x) || !length(x)) {
stop("'x' must be a list if not a 'loo' object.")
}
if (length(list(...))) {
stop("If 'x' is a list then '...' should not be specified.")
}
loos <- x
}
# If subsampling is used
if (any(sapply(loos, inherits, "psis_loo_ss"))) {
return(loo_compare.psis_loo_ss_list(loos))
}
loo_compare_checks(loos)
comp <- loo_compare_matrix(loos)
ord <- loo_compare_order(loos)
# compute elpd_diff and se_elpd_diff relative to best model
rnms <- rownames(comp)
diffs <- mapply(FUN = elpd_diffs, loos[ord[1]], loos[ord])
elpd_diff <- apply(diffs, 2, sum)
se_diff <- apply(diffs, 2, se_elpd_diff)
comp <- cbind(elpd_diff = elpd_diff, se_diff = se_diff, comp)
rownames(comp) <- rnms
# run order statistics-based checks on models
loo_order_stat_check(loos, ord)
class(comp) <- c("compare.loo", class(comp))
return(comp)
}
#' @rdname loo_compare
#' @export
#' @param digits For the print method only, the number of digits to use when
#' printing.
#' @param simplify For the print method only, should only the essential columns
#' of the summary matrix be printed? The entire matrix is always returned, but
#' by default only the most important columns are printed.
print.compare.loo <- function(x, ..., digits = 1, simplify = TRUE) {
xcopy <- x
if (inherits(xcopy, "old_compare.loo")) {
if (NCOL(xcopy) >= 2 && simplify) {
patts <- "^elpd_|^se_diff|^p_|^waic$|^looic$"
xcopy <- xcopy[, grepl(patts, colnames(xcopy))]
}
} else if (NCOL(xcopy) >= 2 && simplify) {
xcopy <- xcopy[, c("elpd_diff", "se_diff")]
}
print(.fr(xcopy, digits), quote = FALSE)
invisible(x)
}
# internal ----------------------------------------------------------------
#' Compute pointwise elpd differences
#' @noRd
#' @param loo_a,loo_b Two `"loo"` objects.
elpd_diffs <- function(loo_a, loo_b) {
pt_a <- loo_a$pointwise
pt_b <- loo_b$pointwise
elpd <- grep("^elpd", colnames(pt_a))
pt_b[, elpd] - pt_a[, elpd]
}
#' Compute standard error of the elpd difference
#' @noRd
#' @param diffs Vector of pointwise elpd differences
se_elpd_diff <- function(diffs) {
N <- length(diffs)
# As `elpd_diff` is defined as the sum of N independent components,
# we can compute the standard error by using the standard deviation
# of the N components and multiplying by `sqrt(N)`.
sqrt(N) * sd(diffs)
}
#' Perform checks on `"loo"` objects before comparison
#' @noRd
#' @param loos List of `"loo"` objects.
#' @return Nothing, just possibly throws errors/warnings.
loo_compare_checks <- function(loos) {
## errors
if (length(loos) <= 1L) {
stop("'loo_compare' requires at least two models.", call.=FALSE)
}
if (!all(sapply(loos, is.loo))) {
stop("All inputs should have class 'loo'.", call.=FALSE)
}
Ns <- vapply(loos, function(x) nrow(x$pointwise), integer(1))
if (any(Ns != Ns[1L])) {
stop(
paste0(
"All models must have the same number of observations, but models have inconsistent observation counts: ",
paste(paste0("'", find_model_names(loos), "' (", Ns, ")"), collapse = ", ")
),
call. = FALSE
)
}
## warnings
yhash <- lapply(loos, attr, which = "yhash")
yhash_ok <- sapply(yhash, function(x) { # ok only if all yhash are same (all NULL is ok)
isTRUE(all.equal(x, yhash[[1]]))
})
if (!all(yhash_ok)) {
warning("Not all models have the same y variable. ('yhash' attributes do not match)",
call. = FALSE)
}
if (all(sapply(loos, is.kfold))) {
Ks <- unlist(lapply(loos, attr, which = "K"))
if (!all(Ks == Ks[1])) {
warning("Not all kfold objects have the same K value. ",
"For a more accurate comparison use the same number of folds. ",
call. = FALSE)
}
} else if (any(sapply(loos, is.kfold)) && any(sapply(loos, is.psis_loo))) {
warning("Comparing LOO-CV to K-fold-CV. ",
"For a more accurate comparison use the same number of folds ",
"or loo for all models compared.",
call. = FALSE)
}
}
#' Find the model names associated with `"loo"` objects
#'
#' @export
#' @keywords internal
#' @param x List of `"loo"` objects.
#' @return Character vector of model names the same length as `x.`
#'
find_model_names <- function(x) {
stopifnot(is.list(x))
out_names <- character(length(x))
names1 <- names(x)
names2 <- lapply(x, "attr", "model_name", exact = TRUE)
names3 <- lapply(x, "[[", "model_name")
names4 <- paste0("model", seq_along(x))
for (j in seq_along(x)) {
if (isTRUE(nzchar(names1[j]))) {
out_names[j] <- names1[j]
} else if (length(names2[[j]])) {
out_names[j] <- names2[[j]]
} else if (length(names3[[j]])) {
out_names[j] <- names3[[j]]
} else {
out_names[j] <- names4[j]
}
}
out_names
}
#' Compute the loo_compare matrix
#' @keywords internal
#' @noRd
#' @param loos List of `"loo"` objects.
loo_compare_matrix <- function(loos){
tmp <- sapply(loos, function(x) {
est <- x$estimates
setNames(c(est), nm = c(rownames(est), paste0("se_", rownames(est))))
})
colnames(tmp) <- find_model_names(loos)
rnms <- rownames(tmp)
comp <- tmp
ord <- loo_compare_order(loos)
comp <- t(comp)[ord, ]
patts <- c("elpd", "p_", "^waic$|^looic$", "^se_waic$|^se_looic$")
col_ord <- unlist(sapply(patts, function(p) grep(p, colnames(comp))),
use.names = FALSE)
comp <- comp[, col_ord]
comp
}
#' Computes the order of loos for comparison
#' @noRd
#' @keywords internal
#' @param loos List of `"loo"` objects.
loo_compare_order <- function(loos){
tmp <- sapply(loos, function(x) {
est <- x$estimates
setNames(c(est), nm = c(rownames(est), paste0("se_", rownames(est))))
})
colnames(tmp) <- find_model_names(loos)
rnms <- rownames(tmp)
ord <- order(tmp[grep("^elpd", rnms), ], decreasing = TRUE)
ord
}
#' Perform checks on `"loo"` objects __after__ comparison
#' @noRd
#' @keywords internal
#' @param loos List of `"loo"` objects.
#' @param ord List of `"loo"` object orderings.
#' @return Nothing, just possibly throws errors/warnings.
loo_order_stat_check <- function(loos, ord) {
## breaks
if (length(loos) <= 11L) {
# procedure cannot be diagnosed for fewer than ten candidate models
# (total models = worst model + ten candidates)
# break from function
return(NULL)
}
## warnings
# compute the elpd differences from the median model
baseline_idx <- middle_idx(ord)
diffs <- mapply(FUN = elpd_diffs, loos[ord[baseline_idx]], loos[ord])
elpd_diff <- apply(diffs, 2, sum)
# estimate the standard deviation of the upper-half-normal
diff_median <- stats::median(elpd_diff)
elpd_diff_trunc <- elpd_diff[elpd_diff >= diff_median]
n_models <- sum(!is.na(elpd_diff_trunc))
candidate_sd <- sqrt(1 / n_models * sum(elpd_diff_trunc^2, na.rm = TRUE))
# estimate expected best diff under null hypothesis
K <- length(loos) - 1
order_stat <- order_stat_heuristic(K, candidate_sd)
if (max(elpd_diff) <= order_stat) {
# flag warning if we suspect no model is theoretically better than the baseline
warning("Difference in performance potentially due to chance.",
"See McLatchie and Vehtari (2023) for details.",
call. = FALSE)
}
}
#' Returns the middle index of a vector
#' @noRd
#' @keywords internal
#' @param vec A vector.
#' @return Integer index value.
middle_idx <- function(vec) floor(length(vec) / 2)
#' Computes maximum order statistic from K Gaussians
#' @noRd
#' @keywords internal
#' @param K Number of Gaussians.
#' @param c Scaling of the order statistic.
#' @return Numeric expected maximum from K samples from a Gaussian with mean
#' zero and scale `"c"`
order_stat_heuristic <- function(K, c) {
qnorm(p = 1 - 1 / (K * 2), mean = 0, sd = c)
}
|