1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
|
#' Efficient approximate leave-one-out cross-validation (LOO) using subsampling,
#' so that less costly and more approximate computation is made for all LOO-fold,
#' and more costly and accurate computations are made only for m<N LOO-folds.
#'
#' @param x A function. The **Methods (by class)** section, below, has detailed
#' descriptions of how to specify the inputs.
#'
#' @inheritParams loo
#' @param save_psis Should the `"psis"` object created internally by
#' `loo_subsample()` be saved in the returned object? See [loo()] for details.
#' @template cores
#'
#' @details The `loo_subsample()` function is an S3 generic and a methods is
#' currently provided for log-likelihood functions. The implementation works
#' for both MCMC and for posterior approximations where it is possible to
#' compute the log density for the approximation.
#'
#' @return `loo_subsample()` returns a named list with class `c("psis_loo_ss",
#' "psis_loo", "loo")`. This has the same structure as objects returned by
#' [loo()] but with the additional slot:
#' * `loo_subsampling`: A list with two vectors, `log_p` and `log_g`, of the
#' same length containing the posterior density and the approximation density
#' for the individual draws.
#'
#' @seealso [loo()], [psis()], [loo_compare()]
#' @template loo-large-data-references
#'
#' @export loo_subsample loo_subsample.function
#'
loo_subsample <- function(x, ...) {
UseMethod("loo_subsample")
}
#' @export
#' @templateVar fn loo_subsample
#' @template function
#' @param data,draws,... For `loo_subsample.function()`, these are the data,
#' posterior draws, and other arguments to pass to the log-likelihood
#' function. Note that for some `loo_approximation`s, the draws will be replaced
#' by the posteriors summary statistics to compute loo approximations. See
#' argument `loo_approximation` for details.
#' @param observations The subsample observations to use. The argument can take
#' four (4) types of arguments:
#' * `NULL` to use all observations. The algorithm then just uses
#' standard `loo()` or `loo_approximate_posterior()`.
#' * A single integer to specify the number of observations to be subsampled.
#' * A vector of integers to provide the indices used to subset the data.
#' _These observations need to be subsampled with the same scheme as given by
#' the `estimator` argument_.
#' * A `psis_loo_ss` object to use the same observations that were used in a
#' previous call to `loo_subsample()`.
#'
#' @param log_p,log_g Should be supplied only if approximate posterior draws are
#' used. The default (`NULL`) indicates draws are from "true" posterior (i.e.
#' using MCMC). If not `NULL` then they should be specified as described in
#' [loo_approximate_posterior()].
#'
#' @param loo_approximation What type of approximation of the loo_i's should be used?
#' The default is `"plpd"` (the log predictive density using the posterior expectation).
#' There are six different methods implemented to approximate loo_i's
#' (see the references for more details):
#' * `"plpd"`: uses the lpd based on point estimates (i.e., \eqn{p(y_i|\hat{\theta})}).
#' * `"lpd"`: uses the lpds (i,e., \eqn{p(y_i|y)}).
#' * `"tis"`: uses truncated importance sampling to approximate PSIS-LOO.
#' * `"waic"`: uses waic (i.e., \eqn{p(y_i|y) - p_{waic}}).
#' * `"waic_grad_marginal"`: uses waic approximation using first order delta
#' method and posterior marginal variances to approximate \eqn{p_{waic}} (ie.
#' \eqn{p(y_i|\hat{\theta})}-p_waic_grad_marginal). Requires gradient of
#' likelihood function.
#' * `"waic_grad"`: uses waic approximation using first order delta method and
#' posterior covariance to approximate \eqn{p_{waic}} (ie.
#' \eqn{p(y_i|\hat{\theta})}-p_waic_grad). Requires gradient of likelihood
#' function.
#' * `"waic_hess"`: uses waic approximation using second order delta method and
#' posterior covariance to approximate \eqn{p_{waic}} (ie.
#' \eqn{p(y_i|\hat{\theta})}-p_waic_grad). Requires gradient and Hessian of
#' likelihood function.
#'
#' As point estimates of \eqn{\hat{\theta}}, the posterior expectations
#' of the parameters are used.
#'
#' @param loo_approximation_draws The number of posterior draws used when
#' integrating over the posterior. This is used if `loo_approximation` is set
#' to `"lpd"`, `"waic"`, or `"tis"`.
#'
#' @param estimator How should `elpd_loo`, `p_loo` and `looic` be estimated?
#' The default is `"diff_srs"`.
#' * `"diff_srs"`: uses the difference estimator with simple random sampling
#' without replacement (srs). `p_loo` is estimated using standard srs.
#' (Magnusson et al., 2020)
#' * `"hh"`: uses the Hansen-Hurwitz estimator with sampling with replacement
#' proportional to size, where `abs` of loo_approximation is used as size.
#' (Magnusson et al., 2019)
#' * `"srs"`: uses simple random sampling and ordinary estimation.
#'
#' @param llgrad The gradient of the log-likelihood. This
#' is only used when `loo_approximation` is `"waic_grad"`,
#' `"waic_grad_marginal"`, or `"waic_hess"`. The default is `NULL`.
#' @param llhess The Hessian of the log-likelihood. This is only used
#' with `loo_approximation = "waic_hess"`. The default is `NULL`.
#'
loo_subsample.function <-
function(x,
...,
data = NULL,
draws = NULL,
observations = 400,
log_p = NULL,
log_g = NULL,
r_eff = 1,
save_psis = FALSE,
cores = getOption("mc.cores", 1),
loo_approximation = "plpd",
loo_approximation_draws = NULL,
estimator = "diff_srs",
llgrad = NULL,
llhess = NULL) {
cores <- loo_cores(cores)
# Asserting inputs
.llfun <- validate_llfun(x)
stopifnot(is.data.frame(data) || is.matrix(data), !is.null(draws))
observations <- assert_observations(observations,
N = dim(data)[1],
estimator)
checkmate::assert_numeric(log_p, len = length(log_g), null.ok = TRUE)
checkmate::assert_null(dim(log_p))
checkmate::assert_numeric(log_g, len = length(log_p), null.ok = TRUE)
checkmate::assert_null(dim(log_g))
if (is.null(log_p) && is.null(log_g)) {
r_eff <- prepare_psis_r_eff(r_eff, len = dim(data)[1])
}
checkmate::assert_flag(save_psis)
cores <- loo_cores(cores)
checkmate::assert_choice(loo_approximation, choices = loo_approximation_choices(), null.ok = FALSE)
checkmate::assert_int(loo_approximation_draws, lower = 1, upper = .ndraws(draws), null.ok = TRUE)
checkmate::assert_choice(estimator, choices = estimator_choices())
.llgrad <- .llhess <- NULL
if (!is.null(llgrad)) .llgrad <- validate_llfun(llgrad)
if (!is.null(llhess)) .llhess <- validate_llfun(llhess)
# Fallbacks
if (is.null(observations)) {
if (is.null(log_p) && is.null(log_g)) {
loo_obj <- loo.function(
.llfun,
...,
data = data,
draws = draws,
r_eff = r_eff,
save_psis = save_psis,
cores = cores
)
} else {
loo_obj <- loo_approximate_posterior.function(
.llfun,
...,
log_p = log_p,
log_g = log_g,
data = data,
draws = draws,
save_psis = save_psis,
cores = cores
)
}
return(loo_obj)
}
# Compute loo approximation
elpd_loo_approx <- elpd_loo_approximation(
.llfun = .llfun,
data = data,
draws = draws,
cores = cores,
loo_approximation = loo_approximation,
loo_approximation_draws = loo_approximation_draws,
.llgrad = .llgrad,
.llhess = .llhess
)
# Draw subsample of observations
if (length(observations) == 1) {
# Compute idxs
idxs <- subsample_idxs(
estimator = estimator,
elpd_loo_approximation = elpd_loo_approx,
observations = observations
)
} else {
# Compute idxs
idxs <- compute_idxs(observations)
}
data_subsample <- data[idxs$idx,, drop = FALSE]
if (length(r_eff) > 1) {
r_eff <- r_eff[idxs$idx]
}
# Compute elpd_loo
if (!is.null(log_p) && !is.null(log_g)) {
loo_obj <- loo_approximate_posterior.function(
x = .llfun,
data = data_subsample,
draws = draws,
log_p = log_p,
log_g = log_g,
save_psis = save_psis,
cores = cores
)
} else {
loo_obj <- loo.function(
x = .llfun,
data = data_subsample,
draws = draws,
r_eff = r_eff,
save_psis = save_psis,
cores = cores
)
}
# Construct ss object and estimate
loo_ss <- psis_loo_ss_object(x = loo_obj,
idxs = idxs,
elpd_loo_approx = elpd_loo_approx,
loo_approximation = loo_approximation,
loo_approximation_draws = loo_approximation_draws,
estimator = estimator,
.llfun = .llfun,
.llgrad = .llgrad,
.llhess = .llhess,
data_dim = dim(data),
ndraws = .ndraws(draws))
loo_ss
}
#' Update `psis_loo_ss` objects
#'
#' @details
#' If `observations` is updated then if a vector of indices or a `psis_loo_ss`
#' object is supplied the updated object will have exactly the observations
#' indicated by the vector or `psis_loo_ss` object. If a single integer is
#' supplied, new observations will be sampled to reach the supplied sample size.
#'
#' @export
#' @inheritParams loo_subsample.function
#' @param data,draws See [loo_subsample.function()].
#' @param object A `psis_loo_ss` object to update.
#' @param ... Currently not used.
#' @return A `psis_loo_ss` object.
#' @importFrom stats update
update.psis_loo_ss <- function(object, ...,
data = NULL,
draws = NULL,
observations = NULL,
r_eff = 1,
cores = getOption("mc.cores", 1),
loo_approximation = NULL,
loo_approximation_draws = NULL,
llgrad = NULL,
llhess = NULL) {
# Fallback
if (is.null(observations) &
is.null(loo_approximation) &
is.null(loo_approximation_draws) &
is.null(llgrad) &
is.null(llhess)) return(object)
if (!is.null(data)) {
stopifnot(is.data.frame(data) || is.matrix(data))
checkmate::assert_true(all(dim(data) == object$loo_subsampling$data_dim))
}
if (!is.null(draws)) {
# No current checks
}
cores <- loo_cores(cores)
# Update elpd approximations
if (!is.null(loo_approximation) | !is.null(loo_approximation_draws)) {
stopifnot(is.data.frame(data) || is.matrix(data) & !is.null(draws))
if (object$loo_subsampling$estimator %in% "hh_pps") {
# HH estimation uses elpd_loo approx to sample,
# so updating it will lead to incorrect results
stop("Can not update loo_approximation when using PPS sampling.", call. = FALSE)
}
if (is.null(loo_approximation)) loo_approximation <- object$loo_subsampling$loo_approximation
if (is.null(loo_approximation_draws)) loo_approximation_draws <- object$loo_subsampling$loo_approximation_draws
if (is.null(llgrad)) .llgrad <- object$loo_subsampling$.llgrad else .llgrad <- validate_llfun(llgrad)
if (is.null(llhess)) .llhess <- object$loo_subsampling$.llhess else .llhess <- validate_llfun(llhess)
# Compute loo approximation
elpd_loo_approx <-
elpd_loo_approximation(.llfun = object$loo_subsampling$.llfun,
data = data, draws = draws,
cores = cores,
loo_approximation = loo_approximation,
loo_approximation_draws = loo_approximation_draws,
.llgrad = .llgrad, .llhess = .llhess)
# Update object
object$loo_subsampling$elpd_loo_approx <- elpd_loo_approx
object$loo_subsampling$loo_approximation <- loo_approximation
object$loo_subsampling["loo_approximation_draws"] <- list(loo_approximation_draws)
object$loo_subsampling$.llgrad <- .llgrad
object$loo_subsampling$.llhess <- .llhess
object$pointwise[, "elpd_loo_approx"] <- object$loo_subsampling$elpd_loo_approx[object$pointwise[, "idx"]]
}
# Update observations
if (!is.null(observations)) {
observations <- assert_observations(observations,
N = object$loo_subsampling$data_dim[1],
object$loo_subsampling$estimator)
if (length(observations) == 1) {
checkmate::assert_int(observations, lower = nobs(object) + 1)
stopifnot(is.data.frame(data) || is.matrix(data) & !is.null(draws))
}
# Compute subsample indices
if (length(observations) > 1) {
idxs <- compute_idxs(observations)
} else {
current_obs <- nobs(object)
# If sampling with replacement
if (object$loo_subsampling$estimator %in% c("hh_pps")) {
idxs <- subsample_idxs(estimator = object$loo_subsampling$estimator,
elpd_loo_approximation = object$loo_subsampling$elpd_loo_approx,
observations = observations - current_obs)
}
# If sampling without replacement
if (object$loo_subsampling$estimator %in% c("diff_srs", "srs")) {
current_idxs <- obs_idx(object, rep = FALSE)
new_idx <- (1:length(object$loo_subsampling$elpd_loo_approx))[-current_idxs]
idxs <- subsample_idxs(estimator = object$loo_subsampling$estimator,
elpd_loo_approximation = object$loo_subsampling$elpd_loo_approx[-current_idxs],
observations = observations - current_obs)
idxs$idx <- new_idx[idxs$idx]
}
}
# Identify how to update object
cidxs <- compare_idxs(idxs, object)
# Compute new observations
if (!is.null(cidxs$new)) {
stopifnot(is.data.frame(data) || is.matrix(data) & !is.null(draws))
data_new_subsample <- data[cidxs$new$idx,, drop = FALSE]
if (length(r_eff) > 1) r_eff <- r_eff[cidxs$new$idx]
if (!is.null(object$approximate_posterior$log_p) & !is.null(object$approximate_posterior$log_g)) {
loo_obj <- loo_approximate_posterior.function(x = object$loo_subsampling$.llfun,
data = data_new_subsample,
draws = draws,
log_p = object$approximate_posterior$log_p,
log_g = object$approximate_posterior$log_g,
save_psis = !is.null(object$psis_object),
cores = cores)
} else {
loo_obj <- loo.function(x = object$loo_subsampling$.llfun,
data = data_new_subsample,
draws = draws,
r_eff = r_eff,
save_psis = !is.null(object$psis_object),
cores = cores)
}
# Add stuff to pointwise
loo_obj$pointwise <-
add_subsampling_vars_to_pointwise(loo_obj$pointwise,
cidxs$new,
object$loo_subsampling$elpd_loo_approx)
} else {
loo_obj <- NULL
}
if (length(observations) == 1) {
# Add new samples pointwise and diagnostic
object <- rbind_psis_loo_ss(object, x = loo_obj)
# Update m_i for current pointwise (diagnostic stay the same)
object$pointwise <- update_m_i_in_pointwise(object$pointwise, cidxs$add, type = "add")
} else {
# Add new samples pointwise and diagnostic
object <- rbind_psis_loo_ss(object, loo_obj)
# Replace m_i current pointwise and diagnostics
object$pointwise <- update_m_i_in_pointwise(object$pointwise, cidxs$add, type = "replace")
# Remove samples
object <- remove_idx.psis_loo_ss(object, idxs = cidxs$remove)
stopifnot(setequal(obs_idx(object), observations))
# Order object as in observations
object <- order.psis_loo_ss(object, observations)
}
}
# Compute estimates
if (object$loo_subsampling$estimator == "hh_pps") {
object <- loo_subsample_estimation_hh(object)
} else if (object$loo_subsampling$estimator == "diff_srs") {
object <- loo_subsample_estimation_diff_srs(object)
} else if (object$loo_subsampling$estimator == "srs") {
object <- loo_subsample_estimation_srs(object)
} else {
stop("No correct estimator used.")
}
assert_psis_loo_ss(object)
object
}
#' Get observation indices used in subsampling
#'
#' @param x A `psis_loo_ss` object.
#' @param rep If sampling with replacement is used, an observation can have
#' multiple samples and these are then repeated in the returned object if
#' `rep=TRUE` (e.g., a vector `c(1,1,2)` indicates that observation 1 has been
#' subampled two times). If `rep=FALSE` only the unique indices are returned.
#'
#' @return An integer vector.
#'
#' @export
obs_idx <- function(x, rep = TRUE) {
checkmate::assert_class(x, "psis_loo_ss")
if (rep) {
idxs <- as.integer(rep(x$pointwise[,"idx"], x$pointwise[,"m_i"]))
} else {
idxs <- as.integer(x$pointwise[,"idx"])
}
idxs
}
#' The number of observations in a `psis_loo_ss` object.
#' @importFrom stats nobs
#' @param object a `psis_loo_ss` object.
#' @param ... Currently unused.
#' @export
nobs.psis_loo_ss <- function(object, ...) {
as.integer(sum(object$pointwise[,"m_i"]))
}
# internal ----------------------------------------------------------------
#' The possible choices of loo_approximations implemented
#'
#' @details
#' The choice `psis` is returned if a `psis_loo` object
#' is converted to a `psis_loo_ss` object with `as.psis_loo_ss()`.
#' But `psis` cannot be chosen in the API of `loo_subsample()`.
#'
#' @noRd
#' @param api The choices available in the loo API or all possible choices.
#' @return A character vector of allowed choices.
loo_approximation_choices <- function(api = TRUE) {
lac <- c("plpd", "lpd", "waic", "waic_grad_marginal", "waic_grad", "waic_hess", "tis", "sis", "none")
if (!api) lac <- c(lac, "psis")
lac
}
#' The estimators implemented
#'
#' @noRd
#' @return A character vector of allowed choices.
estimator_choices <- function() {
c("hh_pps", "diff_srs", "srs")
}
## Approximate elpd -----
#' Utility function to apply user-specified log-likelihood to a single data point
#' @details
#' See `elpd_loo_approximation` and `compute_lpds` for usage examples
#' @noRd
#'
#' @return lpd value for a single data point i
lpd_i <- function(i, llfun, data, draws) {
ll_i <- llfun(data_i = data[i,, drop=FALSE], draws = draws)
ll_i <- as.vector(ll_i)
lpd_i <- logMeanExp(ll_i)
lpd_i
}
#' Utility function to compute lpd using user-defined likelihood function
#' using platform-dependent parallel backends when cores > 1
#'
#' @details
#' See `elpd_loo_approximation` for usage examples
#'
#' @noRd
#' @return a vector of computed log probability densities
compute_lpds <- function(N, data, draws, llfun, cores) {
if (cores == 1) {
lpds <- lapply(X = seq_len(N), FUN = lpd_i, llfun, data, draws)
} else {
if (.Platform$OS.type != "windows") {
lpds <- mclapply(X = seq_len(N), mc.cores = cores, FUN = lpd_i, llfun, data, draws)
} else {
cl <- makePSOCKcluster(cores)
on.exit(stopCluster(cl))
lpds <- parLapply(cl, X = seq_len(N), fun = lpd_i, llfun, data, draws)
}
}
unlist(lpds)
}
#' Compute approximation to loo_i:s
#'
#' @details
#' See [loo_subsample.function()] and the `loo_approximation` argument.
#' @noRd
#' @inheritParams loo_subsample.function
#'
#' @return a vector with approximations of elpd_{loo,i}s
elpd_loo_approximation <- function(.llfun, data, draws, cores, loo_approximation, loo_approximation_draws = NULL, .llgrad = NULL, .llhess = NULL) {
checkmate::assert_function(.llfun, args = c("data_i", "draws"), ordered = TRUE)
stopifnot(is.data.frame(data) || is.matrix(data), !is.null(draws))
checkmate::assert_choice(loo_approximation, choices = loo_approximation_choices(), null.ok = FALSE)
checkmate::assert_int(loo_approximation_draws, lower = 2, null.ok = TRUE)
if (!is.null(.llgrad)) {
checkmate::assert_function(.llgrad, args = c("data_i", "draws"), ordered = TRUE)
}
if (!is.null(.llhess)) {
checkmate::assert_function(.llhess, args = c("data_i", "draws"), ordered = TRUE)
}
cores <- loo_cores(cores)
N <- dim(data)[1]
if (loo_approximation == "none") return(rep(1L,N))
if (loo_approximation %in% c("tis", "sis")) {
draws <- .thin_draws(draws, loo_approximation_draws)
is_values <- suppressWarnings(loo.function(.llfun, data = data, draws = draws, is_method = loo_approximation))
return(is_values$pointwise[, "elpd_loo"])
}
if (loo_approximation == "waic") {
draws <- .thin_draws(draws, loo_approximation_draws)
waic_full_obj <- waic.function(.llfun, data = data, draws = draws)
return(waic_full_obj$pointwise[,"elpd_waic"])
}
# Compute the lpd or log p(y_i|y_{-i})
if (loo_approximation == "lpd") {
draws <- .thin_draws(draws, loo_approximation_draws)
lpds <- compute_lpds(N, data, draws, .llfun, cores)
return(lpds) # Use only the lpd
}
# Compute the point lpd or log p(y_i|\hat{\theta}) - also used in waic_delta approaches
if (loo_approximation == "plpd" |
loo_approximation == "waic_grad" |
loo_approximation == "waic_grad_marginal" |
loo_approximation == "waic_hess") {
draws <- .thin_draws(draws, loo_approximation_draws)
point_est <- .compute_point_estimate(draws)
lpds <- compute_lpds(N, data, point_est, .llfun, cores)
if (loo_approximation == "plpd") return(lpds) # Use only the lpd
}
if (loo_approximation == "waic_grad" |
loo_approximation == "waic_grad_marginal" |
loo_approximation == "waic_hess") {
checkmate::assert_true(!is.null(.llgrad))
point_est <- .compute_point_estimate(draws)
# Compute the lpds
lpds <- compute_lpds(N, data, point_est, .llfun, cores)
if (loo_approximation == "waic_grad" |
loo_approximation == "waic_hess") {
cov_est <- stats::cov(draws)
}
if (loo_approximation == "waic_grad_marginal") {
marg_vars <- apply(draws, MARGIN = 2, var)
}
p_eff_approx <- numeric(N)
if (cores>1) warning("Multicore is not implemented for waic_delta",
call. = FALSE)
if (loo_approximation == "waic_grad") {
for(i in 1:nrow(data)) {
grad_i <- t(.llgrad(data[i,,drop = FALSE], point_est))
local_cov <- cov_est[rownames(grad_i), rownames(grad_i)]
p_eff_approx[i] <- t(grad_i) %*% local_cov %*% grad_i
}
} else if (loo_approximation == "waic_grad_marginal") {
for(i in 1:nrow(data)) {
grad_i <- t(.llgrad(data[i,,drop = FALSE], point_est))
p_eff_approx[i] <- sum(grad_i * marg_vars[rownames(grad_i)] * grad_i)
}
} else if (loo_approximation == "waic_hess") {
checkmate::assert_true(!is.null(.llhess))
for(i in 1:nrow(data)) {
grad_i <- t(.llgrad(data[i,,drop = FALSE], point_est))
hess_i <- .llhess(data_i = data[i,,drop = FALSE], draws = point_est[,rownames(grad_i), drop = FALSE])[,,1]
local_cov <- cov_est[rownames(grad_i), rownames(grad_i)]
p_eff_approx[i] <- t(grad_i) %*% local_cov %*% grad_i +
0.5 * sum(diag(local_cov %*% hess_i %*% local_cov %*% hess_i))
}
} else {
stop(loo_approximation, " is not implemented!", call. = FALSE)
}
return(lpds - p_eff_approx)
}
}
#' Compute a point estimate from a draws object
#'
#' @keywords internal
#' @export
#' @details This is a generic function to compute point estimates from draws
#' objects. The function is internal and should only be used by developers to
#' enable [loo_subsample()] for arbitrary draws objects.
#'
#' @param draws A draws object with draws from the posterior.
#' @return A 1 by P matrix with point estimates from a draws object.
.compute_point_estimate <- function(draws) {
UseMethod(".compute_point_estimate")
}
#' @rdname dot-compute_point_estimate
#' @export
.compute_point_estimate.matrix <- function(draws) {
t(as.matrix(colMeans(draws)))
}
#' @rdname dot-compute_point_estimate
#' @export
.compute_point_estimate.default <- function(draws) {
stop(".compute_point_estimate() has not been implemented for objects of class '", class(draws), "'")
}
#' Thin a draws object
#'
#' @keywords internal
#' @export
#' @details This is a generic function to thin draws from arbitrary draws
#' objects. The function is internal and should only be used by developers to
#' enable [loo_subsample()] for arbitrary draws objects.
#'
#' @param draws A draws object with posterior draws.
#' @param loo_approximation_draws The number of posterior draws to return (ie after thinning).
#' @return A thinned draws object.
.thin_draws <- function(draws, loo_approximation_draws) {
UseMethod(".thin_draws")
}
#' @rdname dot-thin_draws
#' @export
.thin_draws.matrix <- function(draws, loo_approximation_draws) {
if (is.null(loo_approximation_draws)) return(draws)
checkmate::assert_int(loo_approximation_draws, lower = 1, upper = .ndraws(draws), null.ok = TRUE)
S <- .ndraws(draws)
idx <- 1:loo_approximation_draws * S %/% loo_approximation_draws
draws <- draws[idx, , drop = FALSE]
draws
}
#' @rdname dot-thin_draws
#' @export
.thin_draws.numeric <- function(draws, loo_approximation_draws) {
.thin_draws.matrix(as.matrix(draws), loo_approximation_draws)
}
#' @rdname dot-thin_draws
#' @export
.thin_draws.default <- function(draws, loo_approximation_draws) {
stop(".thin_draws() has not been implemented for objects of class '", class(draws), "'")
}
#' The number of posterior draws in a draws object.
#'
#' @keywords internal
#' @export
#' @details This is a generic function to return the total number of draws from
#' an arbitrary draws objects. The function is internal and should only be
#' used by developers to enable [loo_subsample()] for arbitrary draws objects.
#'
#' @param x A draws object with posterior draws.
#' @return An integer with the number of draws.
.ndraws <- function(x) {
UseMethod(".ndraws")
}
#' @rdname dot-ndraws
#' @export
.ndraws.matrix <- function(x) {
nrow(x)
}
#' @rdname dot-ndraws
#' @export
.ndraws.default <- function(x) {
stop(".ndraws() has not been implemented for objects of class '", class(x), "'")
}
## Subsampling -----
#' Subsampling strategy
#'
#' @noRd
#' @param estimator The estimator to use, see `estimator_choices()`.
#' @param elpd_loo_approximation A vector of loo approximations, see `elpd_loo_approximation()`.
#' @param observations The total number of subsample observations to sample.
#' @return A `subsample_idxs` data frame.
subsample_idxs <- function(estimator, elpd_loo_approximation, observations) {
checkmate::assert_choice(estimator, choices = estimator_choices())
checkmate::assert_numeric(elpd_loo_approximation)
checkmate::assert_int(observations)
if (estimator == "hh_pps") {
pi_values <- pps_elpd_loo_approximation_to_pis(elpd_loo_approximation)
idxs_df <- pps_sample(observations, pis = pi_values)
}
if (estimator == "diff_srs" | estimator == "srs") {
if (observations > length(elpd_loo_approximation)) {
stop("'observations' is larger than the total sample size in 'data'.", call. = FALSE)
}
idx <- 1:length(elpd_loo_approximation)
idx_m <- idx[order(stats::runif(length(elpd_loo_approximation)))][1:observations]
idx_m <- idx_m[order(idx_m)]
idxs_df <- data.frame(idx=as.integer(idx_m), m_i=1L)
}
assert_subsample_idxs(x = idxs_df)
idxs_df
}
#' Compute pis from approximation for use in pps sampling.
#' @noRd
#' @details pis are the sampling probabilities and sum to 1.
#' @inheritParams subsample_idxs
#' @return A vector of pis.
pps_elpd_loo_approximation_to_pis <- function(elpd_loo_approximation) {
checkmate::assert_numeric(elpd_loo_approximation)
pi_values <- abs(elpd_loo_approximation)
pi_values <- pi_values/sum(pi_values) # \tilde{\pi}
pi_values
}
#' Compute subsampling indices from an observation vector
#' @noRd
#' @param observation A vector of indices.
#' @return A `subsample_idxs` data frame.
compute_idxs <- function(observations) {
checkmate::assert_integer(observations, lower = 1, min.len = 2, any.missing = FALSE)
tab <- table(observations)
idxs_df <- data.frame(idx = as.integer(names(tab)), m_i = as.integer(unname(tab)))
assert_subsample_idxs(idxs_df)
idxs_df
}
#' Compare the indices to prepare handling
#'
#' @details
#' The function compares the object and sampled indices into `new`
#' (observations not in `object`), `add` (observations in `object`), and
#' `remove` (observations in `object` but not in idxs).
#' @noRd
#' @param idxs A `subsample_idxs` data frame.
#' @param object A `psis_loo_ss` object.
#' @return A list of three `subsample_idxs` data frames. Elements without any
#' observations return `NULL`.
compare_idxs <- function(idxs, object) {
assert_subsample_idxs(idxs)
current_idx <- compute_idxs(obs_idx(object))
result <- list()
new_idx <- !(idxs$idx %in% current_idx$idx)
remove_idx <- !(current_idx$idx %in% idxs$idx)
result$new <- idxs[new_idx, ]
if (nrow(result$new) == 0) {
result["new"] <- NULL
} else {
assert_subsample_idxs(result$new)
}
result$add <- idxs[!new_idx, ]
if (nrow(result$add) == 0) {
result["add"] <- NULL
} else {
assert_subsample_idxs(result$add)
}
result$remove <- current_idx[remove_idx, ]
if (nrow(result$remove) == 0) {
result["remove"] <- NULL
} else {
assert_subsample_idxs(result$remove)
}
result
}
#' Draw a PPS sample with replacement and return a idx_df
#' @noRd
#' @details
#' We are sampling with replacement, hence we only want to compute elpd
#' for each observation once.
#' @param m The total sampling size.
#' @param pis The probability of selecting each observation.
#' @return a `subsample_idxs` data frame.
pps_sample <- function(m, pis) {
checkmate::assert_int(m)
checkmate::assert_numeric(pis, min.len = 2, lower = 0, upper = 1)
idx <- sample(1:length(pis), size = m, replace = TRUE, prob = pis)
idxs_df <- as.data.frame(table(idx), stringsAsFactors = FALSE)
colnames(idxs_df) <- c("idx", "m_i")
idxs_df$idx <- as.integer(idxs_df$idx)
idxs_df$m_i <- as.integer(idxs_df$m_i)
assert_subsample_idxs(idxs_df)
idxs_df
}
## Constructor ---
#' Construct a `psis_loo_ss` object
#'
#' @noRd
#' @param x A `psis_loo` object.
#' @param idxs a `subsample_idxs` data frame.
#' @param elpd_loo_approximation A vector of loo approximations, see
#' `elpd_loo_approximation()`.
#' @inheritParams loo_subsample
#' @param .llfun,.llgrad,.llhess See llfun, llgrad and llhess in `loo_subsample()`.
#' @param data_dim Dimension of the data object.
#' @param ndraws Dimension of the draws object.
#' @return A `psis_loo_ss` object.
psis_loo_ss_object <- function(x,
idxs,
elpd_loo_approx,
loo_approximation, loo_approximation_draws,
estimator,
.llfun, .llgrad, .llhess,
data_dim, ndraws) {
# Assertions
checkmate::assert_class(x, "psis_loo")
assert_subsample_idxs(idxs)
checkmate::assert_numeric(elpd_loo_approx, any.missing = FALSE)
checkmate::assert_choice(loo_approximation, loo_approximation_choices())
checkmate::assert_int(loo_approximation_draws, null.ok = TRUE)
checkmate::assert_choice(estimator, estimator_choices())
checkmate::assert_function(.llfun, args = c("data_i", "draws"), ordered = TRUE)
checkmate::assert_function(.llgrad, args = c("data_i", "draws"), ordered = TRUE, null.ok = TRUE)
checkmate::assert_function(.llhess, args = c("data_i", "draws"), ordered = TRUE, null.ok = TRUE)
checkmate::assert_integer(data_dim, len = 2, lower = 1, any.missing = FALSE)
checkmate::assert_int(ndraws, lower = 1)
# Construct object
class(x) <- c("psis_loo_ss", class(x))
x$pointwise <- add_subsampling_vars_to_pointwise(pointwise = x$pointwise, idxs, elpd_loo_approx)
x$estimates <- cbind(x$estimates, matrix(0, nrow = nrow(x$estimates)))
colnames(x$estimates)[ncol(x$estimates)] <- "subsampling SE"
x$loo_subsampling <- list()
x$loo_subsampling$elpd_loo_approx <- elpd_loo_approx
x$loo_subsampling$loo_approximation <- loo_approximation
x$loo_subsampling["loo_approximation_draws"] <- list(loo_approximation_draws)
x$loo_subsampling$estimator <- estimator
x$loo_subsampling$.llfun <- .llfun
x$loo_subsampling[".llgrad"] <- list(.llgrad)
x$loo_subsampling[".llhess"] <- list(.llhess)
x$loo_subsampling$data_dim <- data_dim
x$loo_subsampling$ndraws <- ndraws
# Compute estimates
if (estimator == "hh_pps") {
x <- loo_subsample_estimation_hh(x)
} else if (estimator == "diff_srs") {
x <- loo_subsample_estimation_diff_srs(x)
} else if (estimator == "srs") {
x <- loo_subsample_estimation_srs(x)
} else {
stop("No correct estimator used.")
}
assert_psis_loo_ss(x)
x
}
as.psis_loo_ss <- function(x) {
UseMethod("as.psis_loo_ss")
}
#' @export
as.psis_loo_ss.psis_loo_ss <- function(x) {
x
}
#' @export
as.psis_loo_ss.psis_loo <- function(x) {
class(x) <- c("psis_loo_ss", class(x))
x$estimates <- cbind(x$estimates, matrix(0, nrow = nrow(x$estimates)))
colnames(x$estimates)[ncol(x$estimates)] <- "subsampling SE"
x$pointwise <- cbind(x$pointwise,
matrix(1:nrow(x$pointwise), byrow = FALSE, ncol = 1),
matrix(rep(1,nrow(x$pointwise)), byrow = FALSE, ncol = 1),
x$pointwise[, "elpd_loo"])
ncp <- ncol(x$pointwise)
colnames(x$pointwise)[(ncp-2):ncp] <- c("idx", "m_i", "elpd_loo_approx")
x$loo_subsampling <- list(elpd_loo_approx=x$pointwise[, "elpd_loo"],
loo_approximation = "psis",
loo_approximation_draws = NULL,
estimator = "diff_srs",
data_dim = c(nrow(x$pointwise), NA),
ndraws = NA)
assert_psis_loo_ss(x)
x
}
as.psis_loo <- function(x) {
UseMethod("as.psis_loo")
}
#' @export
as.psis_loo.psis_loo <- function(x) {
x
}
#' @export
as.psis_loo.psis_loo_ss <- function(x) {
if (x$loo_subsampling$data_dim[1] == nrow(x$pointwise)) {
x$estimates <- x$estimates[, 1:2]
x$pointwise <- x$pointwise[, 1:5]
x$loo_subsampling <- NULL
loo_obj <- importance_sampling_loo_object(pointwise = x$pointwise[, 1:5],
diagnostics = x$diagnostics,
dims = attr(x, "dims"),
is_method = "psis",
is_object = x$psis_object)
if (inherits(x, "psis_loo_ap")) {
loo_obj$approximate_posterior <- list(log_p = x$approximate_posterior$log_p,
log_g = x$approximate_posterior$log_g)
class(loo_obj) <- c("psis_loo_ap", class(loo_obj))
assert_psis_loo_ap(loo_obj)
}
} else {
stop("A subsampling loo object can only be coerced to a loo object ",
"if all observations in data have been subsampled.", call. = FALSE)
}
loo_obj
}
#' Add subsampling information to the pointwise element in a `psis_loo` object.
#' @noRd
#' @param pointwise The `pointwise` element in a `psis_loo` object.
#' @param idxs A `subsample_idxs` data frame.
#' @param elpd_loo_approximation A vector of loo approximations, see `elpd_loo_approximation()`.
#' @return A `pointwise` matrix with subsampling information.
add_subsampling_vars_to_pointwise <- function(pointwise, idxs, elpd_loo_approx) {
checkmate::assert_matrix(pointwise,
any.missing = FALSE,
min.cols = 5)
checkmate::assert_names(colnames(pointwise), identical.to = c("elpd_loo","mcse_elpd_loo","p_loo","looic", "influence_pareto_k"))
assert_subsample_idxs(idxs)
checkmate::assert_numeric(elpd_loo_approx)
pw <- cbind(as.data.frame(pointwise), idxs)
pw$elpd_loo_approx <- elpd_loo_approx[idxs$idx]
pw <- as.matrix(pw)
rownames(pw) <- NULL
assert_subsampling_pointwise(pw)
pw
}
#' Add `psis_loo` object to a `psis_loo_ss` object
#' @noRd
#' @param object A `psis_loo_ss` object.
#' @param x A `psis_loo` object.
#' @return An updated `psis_loo_ss` object.
rbind_psis_loo_ss <- function(object, x) {
checkmate::assert_class(object, "psis_loo_ss")
if (is.null(x)) return(object) # Fallback
checkmate::assert_class(x, "psis_loo")
assert_subsampling_pointwise(object$pointwise)
assert_subsampling_pointwise(x$pointwise)
checkmate::assert_disjunct(object$pointwise[, "idx"], x$pointwise[, "idx"])
object$pointwise <- rbind(object$pointwise, x$pointwise)
object$diagnostics$pareto_k <-
c(object$diagnostics$pareto_k, x$diagnostics$pareto_k)
object$diagnostics$n_eff <- c(object$diagnostics$n_eff, x$diagnostics$n_eff)
object$diagnostics$r_eff <- c(object$diagnostics$r_eff, x$diagnostics$r_eff)
attr(object, "dims")[2] <- nrow(object$pointwise)
object
}
#' Remove observations in `idxs` from object
#' @noRd
#' @param object A `psis_loo_ss` object.
#' @param idxs A `subsample_idxs` data frame.
#' @return A `psis_loo_ss` object.
remove_idx.psis_loo_ss <- function(object, idxs) {
checkmate::assert_class(object, "psis_loo_ss")
if (is.null(idxs)) return(object) # Fallback
assert_subsample_idxs(idxs)
row_map <- data.frame(
row_no = 1:nrow(object$pointwise),
idx = object$pointwise[, "idx"]
)
row_map <- merge(row_map, idxs, by = "idx", all.y = TRUE)
object$pointwise <- object$pointwise[-row_map$row_no,,drop = FALSE]
object$diagnostics$pareto_k <- object$diagnostics$pareto_k[-row_map$row_no]
object$diagnostics$n_eff <- object$diagnostics$n_eff[-row_map$row_no]
object$diagnostics$r_eff <- object$diagnostics$r_eff[-row_map$row_no]
attr(object, "dims")[2] <- nrow(object$pointwise)
object
}
#' Order object by `observations`.
#' @noRd
#' @param x A `psis_loo_ss` object.
#' @param observations A vector with indices.
#' @return An ordered `psis_loo_ss` object.
order.psis_loo_ss <- function(x, observations) {
checkmate::assert_class(x, "psis_loo_ss")
checkmate::assert_integer(observations, len = nobs(x))
if (identical(obs_idx(x), observations)) return(x) # Fallback
checkmate::assert_set_equal(obs_idx(x), observations)
row_map_x <- data.frame(row_no_x = 1:nrow(x$pointwise), idx = x$pointwise[, "idx"])
row_map_obs <- data.frame(row_no_obs = 1:length(observations), idx = observations)
row_map <- merge(row_map_obs, row_map_x, by = "idx", sort = FALSE)
x$pointwise <- x$pointwise[row_map$row_no_x,,drop = FALSE]
x$diagnostics$pareto_k <- x$diagnostics$pareto_k[row_map$row_no_x]
x$diagnostics$n_eff <- x$diagnostics$n_eff[row_map$row_no_x]
x$diagnostics$r_eff <- x$diagnostics$r_eff[row_map$row_no_x]
x
}
#' Update m_i in a `pointwise` element.
#' @noRd
#' @param x A `psis_loo_ss` `pointwise` data frame.
#' @param idxs A `subsample_idxs` data frame.
#' @param type should the m_i:s in `idxs` `"replace"` the current m_i:s or
#' `"add"` to them.
#' @return An ordered `psis_loo_ss` object.
update_m_i_in_pointwise <- function(pointwise, idxs, type = "replace") {
assert_subsampling_pointwise(pointwise)
if (is.null(idxs)) return(pointwise) # Fallback
assert_subsample_idxs(idxs)
checkmate::assert_choice(type, choices = c("replace", "add"))
row_map <- data.frame(row_no = 1:nrow(pointwise), idx = pointwise[, "idx"])
row_map <- merge(row_map, idxs, by = "idx", all.y = TRUE)
if (type == "replace") {
pointwise[row_map$row_no, "m_i"] <- row_map$m_i
}
if (type == "add") {
pointwise[row_map$row_no, "m_i"] <- pointwise[row_map$row_no, "m_i"] + row_map$m_i
}
pointwise
}
## Estimation ---
#' Estimate the elpd using the Hansen-Hurwitz estimator (Magnusson et al., 2019)
#' @noRd
#' @param x A `psis_loo_ss` object.
#' @return A `psis_loo_ss` object.
loo_subsample_estimation_hh <- function(x) {
checkmate::assert_class(x, "psis_loo_ss")
N <- length(x$loo_subsampling$elpd_loo_approx)
pis <- pps_elpd_loo_approximation_to_pis(x$loo_subsampling$elpd_loo_approx)
pis_sample <- pis[x$pointwise[,"idx"]]
hh_elpd_loo <- whhest(z = pis_sample, m_i = x$pointwise[, "m_i"], y = x$pointwise[, "elpd_loo"], N)
srs_elpd_loo <- srs_est(y = x$pointwise[, "elpd_loo"], y_approx = pis_sample)
x$estimates["elpd_loo", "Estimate"] <- hh_elpd_loo$y_hat_ppz
if (hh_elpd_loo$hat_v_y_ppz > 0) {
x$estimates["elpd_loo", "SE"] <- sqrt(hh_elpd_loo$hat_v_y_ppz)
} else {
warning("Negative estimate of SE, more subsampling obs. needed.", call. = FALSE)
x$estimates["elpd_loo", "SE"] <- NaN
}
x$estimates["elpd_loo", "subsampling SE"] <- sqrt(hh_elpd_loo$v_hat_y_ppz)
hh_p_loo <- whhest(z = pis_sample, m_i = x$pointwise[,"m_i"], y = x$pointwise[,"p_loo"], N)
x$estimates["p_loo", "Estimate"] <- hh_p_loo$y_hat_ppz
if (hh_p_loo$hat_v_y_ppz > 0) {
x$estimates["p_loo", "SE"] <- sqrt(hh_p_loo$hat_v_y_ppz)
} else {
warning("Negative estimate of SE, more subsampling obs. needed.", call. = FALSE)
x$estimates["elpd_loo", "SE"] <- NaN
}
x$estimates["p_loo", "subsampling SE"] <- sqrt(hh_p_loo$v_hat_y_ppz)
update_psis_loo_ss_estimates(x)
}
#' Update a `psis_loo_ss` object with generic estimates
#'
#' @noRd
#' @details
#' Updates a `psis_loo_ss` with generic estimates (looic)
#' and updates components in the object based on x$estimate.
#' @param x A `psis_loo_ss` object.
#' @return x A `psis_loo_ss` object.
update_psis_loo_ss_estimates <- function(x) {
checkmate::assert_class(x, "psis_loo_ss")
x$estimates["looic", "Estimate"] <- (-2) * x$estimates["elpd_loo", "Estimate"]
x$estimates["looic", "SE"] <- 2 * x$estimates["elpd_loo", "SE"]
x$estimates["looic", "subsampling SE"] <- 2 * x$estimates["elpd_loo", "subsampling SE"]
x$elpd_loo <- x$estimates["elpd_loo", "Estimate"]
x$p_loo <- x$estimates["p_loo", "Estimate"]
x$looic <- x$estimates["looic", "Estimate"]
x$se_elpd_loo <- x$estimates["elpd_loo", "SE"]
x$se_p_loo <- x$estimates["p_loo", "SE"]
x$se_looic <- x$estimates["looic", "SE"]
x
}
#' Weighted Hansen-Hurwitz estimator (Magnusson et al., 2019)
#' @noRd
#' @param z Normalized probabilities for the observation.
#' @param m_i The number of times obs i was selected.
#' @param y The values observed.
#' @param N The total number of observations in finite population.
#' @return A list with estimates.
whhest <- function(z, m_i, y, N) {
checkmate::assert_numeric(z, lower = 0, upper = 1)
checkmate::assert_numeric(y, len = length(z))
checkmate::assert_integerish(m_i, len = length(z))
est_list <- list(m = sum(m_i))
est_list$y_hat_ppz <- sum(m_i*(y/z))/est_list$m
est_list$v_hat_y_ppz <- (sum(m_i*((y/z - est_list$y_hat_ppz)^2))/est_list$m)/(est_list$m-1)
# See unbiadness proof in supplementary material to the article
est_list$hat_v_y_ppz <-
(sum(m_i*(y^2/z)) / est_list$m) +
est_list$v_hat_y_ppz / N - est_list$y_hat_ppz^2 / N
est_list
}
#' Estimate elpd using the difference estimator and SRS-WOR (Magnusson et al., 2020)
#' @noRd
#' @param x A `psis_loo_ss` object.
#' @return A `psis_loo_ss` object.
loo_subsample_estimation_diff_srs <- function(x) {
checkmate::assert_class(x, "psis_loo_ss")
elpd_loo_est <- srs_diff_est(y_approx = x$loo_subsampling$elpd_loo_approx, y = x$pointwise[, "elpd_loo"], y_idx = x$pointwise[, "idx"])
x$estimates["elpd_loo", "Estimate"] <- elpd_loo_est$y_hat
x$estimates["elpd_loo", "SE"] <- sqrt(elpd_loo_est$hat_v_y)
x$estimates["elpd_loo", "subsampling SE"] <- sqrt(elpd_loo_est$v_y_hat)
p_loo_est <- srs_est(y = x$pointwise[, "p_loo"], y_approx = x$loo_subsampling$elpd_loo_approx)
x$estimates["p_loo", "Estimate"] <- p_loo_est$y_hat
x$estimates["p_loo", "SE"] <- sqrt(p_loo_est$hat_v_y)
x$estimates["p_loo", "subsampling SE"] <- sqrt(p_loo_est$v_y_hat)
update_psis_loo_ss_estimates(x)
}
#' Difference estimation using SRS-WOR sampling (Magnusson et al., 2020)
#' @noRd
#' @param y_approx Approximated values of all observations.
#' @param y The values observed.
#' @param y_idx The index of `y` in `y_approx`.
#' @return A list with estimates.
srs_diff_est <- function(y_approx, y, y_idx) {
checkmate::assert_numeric(y_approx)
checkmate::assert_numeric(y, max.len = length(y_approx))
checkmate::assert_integerish(y_idx, len = length(y))
N <- length(y_approx)
m <- length(y)
y_approx_m <- y_approx[y_idx]
e_i <- y - y_approx_m
t_pi_tilde <- sum(y_approx)
t_pi2_tilde <- sum(y_approx^2)
t_e <- N * mean(e_i)
t_hat_epsilon <- N * mean(y^2 - y_approx_m^2)
est_list <- list(m = length(y), N = N)
# eq (7)
est_list$y_hat <- t_pi_tilde + t_e
# eq (8)
est_list$v_y_hat <- N^2 * (1 - m / N) * var(e_i) / m
# eq (9) first row second `+` should be `-`
# Supplementary material eq (6) has this correct
# Here the variance is for sum, while in the paper the variance is for mean
# which explains the proportional difference of 1/N
est_list$hat_v_y <- (t_pi2_tilde + t_hat_epsilon) - # a (has been checked)
(1/N) * (t_e^2 - est_list$v_y_hat + 2 * t_pi_tilde * est_list$y_hat - t_pi_tilde^2) # b
est_list
}
#' Estimate elpd using the standard simple-re-sample without
#' resampling (SRS-WOR) estimator
#' @noRd
#' @param x A `psis_loo_ss` object.
#' @return A `psis_loo_ss` object.
loo_subsample_estimation_srs <- function(x) {
checkmate::assert_class(x, "psis_loo_ss")
elpd_loo_est <- srs_est(y = x$pointwise[, "elpd_loo"], y_approx = x$loo_subsampling$elpd_loo_approx)
x$estimates["elpd_loo", "Estimate"] <- elpd_loo_est$y_hat
x$estimates["elpd_loo", "SE"] <- sqrt(elpd_loo_est$hat_v_y)
x$estimates["elpd_loo", "subsampling SE"] <- sqrt(elpd_loo_est$v_y_hat)
p_loo_est <- srs_est(y = x$pointwise[, "p_loo"], y_approx = x$loo_subsampling$elpd_loo_approx)
x$estimates["p_loo", "Estimate"] <- p_loo_est$y_hat
x$estimates["p_loo", "SE"] <- sqrt(p_loo_est$hat_v_y)
x$estimates["p_loo", "subsampling SE"] <- sqrt(p_loo_est$v_y_hat)
update_psis_loo_ss_estimates(x)
}
#' Simple-re-sample without resampling (SRS-WOR) estimation
#' @noRd
#' @param y The values observed.
#' @param y_approx A vector of length N.
#' @return A list of estimates.
srs_est <- function(y, y_approx) {
checkmate::assert_numeric(y)
checkmate::assert_numeric(y_approx, min.len = length(y))
N <- length(y_approx)
m <- length(y)
est_list <- list(m = m)
est_list$y_hat <- N * mean(y)
est_list$v_y_hat <- N^2 * (1-m/N) * var(y)/m
est_list$hat_v_y <- N * var(y)
est_list
}
## Specialized assertions of objects ---
#' Assert that the object has the expected properties
#' @noRd
#' @param x An object to assert.
#' @param N The total number of data points in data.
#' @param estimator The estimator used.
#' @return An asserted object of `x`.
assert_observations <- function(x, N, estimator) {
checkmate::assert_int(N)
checkmate::assert_choice(estimator, choices = estimator_choices())
if (is.null(x)) return(x)
if (checkmate::test_class(x, "psis_loo_ss")) {
x <- obs_idx(x)
checkmate::assert_integer(x, lower = 1, upper = N, any.missing = FALSE)
return(x)
}
x <- as.integer(x)
if (length(x) > 1) {
checkmate::assert_integer(x, lower = 1, upper = N, any.missing = FALSE)
if (estimator %in% "hh_pps") {
message("Sampling proportional to elpd approximation and with replacement assumed.")
}
if (estimator %in% c("diff_srs", "srs")) {
message("Simple random sampling with replacement assumed.")
}
} else {
checkmate::assert_integer(x, lower = 1, any.missing = FALSE)
}
x
}
#' Assert that the object has the expected properties
#' @noRd
#' @inheritParams assert_observations
#' @return An asserted object of `x`.
assert_subsample_idxs <- function(x) {
checkmate::assert_data_frame(x,
types = c("integer", "integer"),
any.missing = FALSE,
min.rows = 1,
col.names = "named")
checkmate::assert_names(names(x), identical.to = c("idx", "m_i"))
checkmate::assert_integer(x$idx, lower = 1, any.missing = FALSE, unique = TRUE)
checkmate::assert_integer(x$m_i, lower = 1, any.missing = FALSE)
x
}
#' Assert that the object has the expected properties
#' @noRd
#' @inheritParams assert_observations
#' @return An asserted object of `x`.
assert_psis_loo_ss <- function(x) {
checkmate::assert_class(x, "psis_loo_ss")
checkmate::assert_names(names(x), must.include = c("estimates", "pointwise", "diagnostics", "psis_object", "loo_subsampling"))
checkmate::assert_names(rownames(x$estimates), must.include = c("elpd_loo", "p_loo", "looic"))
checkmate::assert_names(colnames(x$estimates), must.include = c("Estimate", "SE", "subsampling SE"))
assert_subsampling_pointwise(x$pointwise)
checkmate::assert_names(names(x$loo_subsampling),
must.include = c("elpd_loo_approx",
"loo_approximation", "loo_approximation_draws",
"estimator",
"data_dim", "ndraws"))
checkmate::assert_numeric(x$loo_subsampling$elpd_loo_approx, any.missing = FALSE, len = x$loo_subsampling$data_dim[1])
checkmate::assert_choice(x$loo_subsampling$loo_approximation, choices = loo_approximation_choices(api = FALSE))
checkmate::assert_int(x$loo_subsampling$loo_approximation_draws, null.ok = TRUE)
checkmate::assert_choice(x$loo_subsampling$estimator, choices = estimator_choices())
checkmate::assert_integer(x$loo_subsampling$data_dim, any.missing = TRUE, len = 2)
checkmate::assert_int(x$loo_subsampling$data_dim[1], na.ok = FALSE)
checkmate::assert_integer(x$loo_subsampling$ndraws, len = 1, any.missing = TRUE)
x
}
#' Assert that the object has the expected properties
#' @noRd
#' @inheritParams assert_observations
#' @return An asserted object of `x`.
assert_subsampling_pointwise <- function(x) {
checkmate::assert_matrix(x,
any.missing = FALSE,
ncols = 8)
checkmate::assert_names(colnames(x), identical.to = c("elpd_loo", "mcse_elpd_loo", "p_loo", "looic", "influence_pareto_k", "idx", "m_i", "elpd_loo_approx"))
x
}
|