File: loo2-elpd.html

package info (click to toggle)
r-cran-loo 2.9.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 4,836 kB
  • sloc: sh: 15; makefile: 2
file content (557 lines) | stat: -rw-r--r-- 34,030 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />

<meta name="viewport" content="width=device-width, initial-scale=1" />

<meta name="author" content="Bruno Nicenboim" />

<meta name="date" content="2025-12-22" />

<title>Holdout validation and K-fold cross-validation of Stan programs with the loo package</title>

<script>// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
// be compatible with the behavior of Pandoc < 2.8).
document.addEventListener('DOMContentLoaded', function(e) {
  var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
  var i, h, a;
  for (i = 0; i < hs.length; i++) {
    h = hs[i];
    if (!/^h[1-6]$/i.test(h.tagName)) continue;  // it should be a header h1-h6
    a = h.attributes;
    while (a.length > 0) h.removeAttribute(a[0].name);
  }
});
</script>

<style type="text/css">
  code{white-space: pre-wrap;}
  span.smallcaps{font-variant: small-caps;}
  span.underline{text-decoration: underline;}
  div.column{display: inline-block; vertical-align: top; width: 50%;}
  div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
  ul.task-list{list-style: none;}
    </style>



<style type="text/css">
  code {
    white-space: pre;
  }
  .sourceCode {
    overflow: visible;
  }
</style>
<style type="text/css" data-origin="pandoc">
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
  { counter-reset: source-line 0; }
pre.numberSource code > span
  { position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
  { content: counter(source-line);
    position: relative; left: -1em; text-align: right; vertical-align: baseline;
    border: none; display: inline-block;
    -webkit-touch-callout: none; -webkit-user-select: none;
    -khtml-user-select: none; -moz-user-select: none;
    -ms-user-select: none; user-select: none;
    padding: 0 4px; width: 4em;
    color: #aaaaaa;
  }
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa;  padding-left: 4px; }
div.sourceCode
  {   }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #7d9029; } /* Attribute */
code span.bn { color: #40a070; } /* BaseN */
code span.bu { } /* BuiltIn */
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4070a0; } /* Char */
code span.cn { color: #880000; } /* Constant */
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
code span.dt { color: #902000; } /* DataType */
code span.dv { color: #40a070; } /* DecVal */
code span.er { color: #ff0000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #40a070; } /* Float */
code span.fu { color: #06287e; } /* Function */
code span.im { } /* Import */
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
code span.op { color: #666666; } /* Operator */
code span.ot { color: #007020; } /* Other */
code span.pp { color: #bc7a00; } /* Preprocessor */
code span.sc { color: #4070a0; } /* SpecialChar */
code span.ss { color: #bb6688; } /* SpecialString */
code span.st { color: #4070a0; } /* String */
code span.va { color: #19177c; } /* Variable */
code span.vs { color: #4070a0; } /* VerbatimString */
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */

</style>
<script>
// apply pandoc div.sourceCode style to pre.sourceCode instead
(function() {
  var sheets = document.styleSheets;
  for (var i = 0; i < sheets.length; i++) {
    if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue;
    try { var rules = sheets[i].cssRules; } catch (e) { continue; }
    var j = 0;
    while (j < rules.length) {
      var rule = rules[j];
      // check if there is a div.sourceCode rule
      if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") {
        j++;
        continue;
      }
      var style = rule.style.cssText;
      // check if color or background-color is set
      if (rule.style.color === '' && rule.style.backgroundColor === '') {
        j++;
        continue;
      }
      // replace div.sourceCode by a pre.sourceCode rule
      sheets[i].deleteRule(j);
      sheets[i].insertRule('pre.sourceCode{' + style + '}', j);
    }
  }
})();
</script>




<style type="text/css">body {
background-color: #fff;
margin: 1em auto;
max-width: 700px;
overflow: visible;
padding-left: 2em;
padding-right: 2em;
font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
font-size: 14px;
line-height: 1.35;
}
#TOC {
clear: both;
margin: 0 0 10px 10px;
padding: 4px;
width: 400px;
border: 1px solid #CCCCCC;
border-radius: 5px;
background-color: #f6f6f6;
font-size: 13px;
line-height: 1.3;
}
#TOC .toctitle {
font-weight: bold;
font-size: 15px;
margin-left: 5px;
}
#TOC ul {
padding-left: 40px;
margin-left: -1.5em;
margin-top: 5px;
margin-bottom: 5px;
}
#TOC ul ul {
margin-left: -2em;
}
#TOC li {
line-height: 16px;
}
table {
margin: 1em auto;
border-width: 1px;
border-color: #DDDDDD;
border-style: outset;
border-collapse: collapse;
}
table th {
border-width: 2px;
padding: 5px;
border-style: inset;
}
table td {
border-width: 1px;
border-style: inset;
line-height: 18px;
padding: 5px 5px;
}
table, table th, table td {
border-left-style: none;
border-right-style: none;
}
table thead, table tr.even {
background-color: #f7f7f7;
}
p {
margin: 0.5em 0;
}
blockquote {
background-color: #f6f6f6;
padding: 0.25em 0.75em;
}
hr {
border-style: solid;
border: none;
border-top: 1px solid #777;
margin: 28px 0;
}
dl {
margin-left: 0;
}
dl dd {
margin-bottom: 13px;
margin-left: 13px;
}
dl dt {
font-weight: bold;
}
ul {
margin-top: 0;
}
ul li {
list-style: circle outside;
}
ul ul {
margin-bottom: 0;
}
pre, code {
background-color: #f7f7f7;
border-radius: 3px;
color: #333;
white-space: pre-wrap; 
}
pre {
border-radius: 3px;
margin: 5px 0px 10px 0px;
padding: 10px;
}
pre:not([class]) {
background-color: #f7f7f7;
}
code {
font-family: Consolas, Monaco, 'Courier New', monospace;
font-size: 85%;
}
p > code, li > code {
padding: 2px 0px;
}
div.figure {
text-align: center;
}
img {
background-color: #FFFFFF;
padding: 2px;
border: 1px solid #DDDDDD;
border-radius: 3px;
border: 1px solid #CCCCCC;
margin: 0 5px;
}
h1 {
margin-top: 0;
font-size: 35px;
line-height: 40px;
}
h2 {
border-bottom: 4px solid #f7f7f7;
padding-top: 10px;
padding-bottom: 2px;
font-size: 145%;
}
h3 {
border-bottom: 2px solid #f7f7f7;
padding-top: 10px;
font-size: 120%;
}
h4 {
border-bottom: 1px solid #f7f7f7;
margin-left: 8px;
font-size: 105%;
}
h5, h6 {
border-bottom: 1px solid #ccc;
font-size: 105%;
}
a {
color: #0033dd;
text-decoration: none;
}
a:hover {
color: #6666ff; }
a:visited {
color: #800080; }
a:visited:hover {
color: #BB00BB; }
a[href^="http:"] {
text-decoration: underline; }
a[href^="https:"] {
text-decoration: underline; }

code > span.kw { color: #555; font-weight: bold; } 
code > span.dt { color: #902000; } 
code > span.dv { color: #40a070; } 
code > span.bn { color: #d14; } 
code > span.fl { color: #d14; } 
code > span.ch { color: #d14; } 
code > span.st { color: #d14; } 
code > span.co { color: #888888; font-style: italic; } 
code > span.ot { color: #007020; } 
code > span.al { color: #ff0000; font-weight: bold; } 
code > span.fu { color: #900; font-weight: bold; } 
code > span.er { color: #a61717; background-color: #e3d2d2; } 
</style>




</head>

<body>




<h1 class="title toc-ignore">Holdout validation and K-fold cross-validation of Stan programs with the loo package</h1>
<h4 class="author">Bruno Nicenboim</h4>
<h4 class="date">2025-12-22</h4>


<div id="TOC">
<ul>
<li><a href="#introduction">Introduction</a></li>
<li><a href="#example-eradication-of-roaches-using-holdout-validation-approach">Example: Eradication of Roaches using holdout validation approach</a>
<ul>
<li><a href="#coding-the-stan-model">Coding the Stan model</a></li>
<li><a href="#setup">Setup</a></li>
</ul></li>
<li><a href="#holdout-validation">Holdout validation</a>
<ul>
<li><a href="#splitting-the-data-between-train-and-test">Splitting the data between train and test</a></li>
<li><a href="#fitting-the-model-with-rstan">Fitting the model with RStan</a></li>
<li><a href="#computing-holdout-elpd">Computing holdout elpd:</a></li>
</ul></li>
<li><a href="#k-fold-cross-validation">K-fold cross validation</a>
<ul>
<li><a href="#splitting-the-data-in-folds">Splitting the data in folds</a></li>
<li><a href="#fitting-and-extracting-the-log-pointwise-predictive-densities-for-each-fold">Fitting and extracting the log pointwise predictive densities for each fold</a></li>
<li><a href="#computing-k-fold-elpd">Computing K-fold elpd:</a></li>
</ul></li>
<li><a href="#references">References</a></li>
</ul>
</div>

<!--
%\VignetteEngine{knitr::rmarkdown}
%\VignetteIndexEntry{Holdout validation and K-fold cross-validation of Stan programs with the loo package}
-->
<div id="introduction" class="section level1">
<h1>Introduction</h1>
<p>This vignette demonstrates how to do holdout validation and K-fold cross-validation with <strong>loo</strong> for a Stan program.</p>
</div>
<div id="example-eradication-of-roaches-using-holdout-validation-approach" class="section level1">
<h1>Example: Eradication of Roaches using holdout validation approach</h1>
<p>This vignette uses the same example as in the vignettes <a href="http://mc-stan.org/loo/articles/loo2-example.html"><em>Using the loo package (version &gt;= 2.0.0)</em></a> and <a href="https://mc-stan.org/loo/articles/loo2-moment-matching.html"><em>Avoiding model refits in leave-one-out cross-validation with moment matching</em></a>.</p>
<div id="coding-the-stan-model" class="section level2">
<h2>Coding the Stan model</h2>
<p>Here is the Stan code for fitting a Poisson regression model:</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Note: some syntax used in this Stan program requires RStan &gt;= 2.26 (or CmdStanR)</span></span>
<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="co"># To use an older version of RStan change the line declaring `y` to: int y[N];</span></span>
<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a>stancode <span class="ot">&lt;-</span> <span class="st">&quot;</span></span>
<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="st">data {</span></span>
<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a><span class="st">  int&lt;lower=1&gt; K;</span></span>
<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a><span class="st">  int&lt;lower=1&gt; N;</span></span>
<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a><span class="st">  matrix[N,K] x;</span></span>
<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a><span class="st">  array[N] int y;</span></span>
<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a><span class="st">  vector[N] offset_; // offset is reserved keyword in Stan so use offset_</span></span>
<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a><span class="st">  real beta_prior_scale;</span></span>
<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a><span class="st">  real alpha_prior_scale;</span></span>
<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a><span class="st">}</span></span>
<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a><span class="st">parameters {</span></span>
<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a><span class="st">  vector[K] beta;</span></span>
<span id="cb1-16"><a href="#cb1-16" aria-hidden="true" tabindex="-1"></a><span class="st">  real intercept;</span></span>
<span id="cb1-17"><a href="#cb1-17" aria-hidden="true" tabindex="-1"></a><span class="st">}</span></span>
<span id="cb1-18"><a href="#cb1-18" aria-hidden="true" tabindex="-1"></a><span class="st">model {</span></span>
<span id="cb1-19"><a href="#cb1-19" aria-hidden="true" tabindex="-1"></a><span class="st">  y ~ poisson(exp(x * beta + intercept + offset_));</span></span>
<span id="cb1-20"><a href="#cb1-20" aria-hidden="true" tabindex="-1"></a><span class="st">  beta ~ normal(0,beta_prior_scale);</span></span>
<span id="cb1-21"><a href="#cb1-21" aria-hidden="true" tabindex="-1"></a><span class="st">  intercept ~ normal(0,alpha_prior_scale);</span></span>
<span id="cb1-22"><a href="#cb1-22" aria-hidden="true" tabindex="-1"></a><span class="st">}</span></span>
<span id="cb1-23"><a href="#cb1-23" aria-hidden="true" tabindex="-1"></a><span class="st">generated quantities {</span></span>
<span id="cb1-24"><a href="#cb1-24" aria-hidden="true" tabindex="-1"></a><span class="st">  vector[N] log_lik;</span></span>
<span id="cb1-25"><a href="#cb1-25" aria-hidden="true" tabindex="-1"></a><span class="st">  for (n in 1:N)</span></span>
<span id="cb1-26"><a href="#cb1-26" aria-hidden="true" tabindex="-1"></a><span class="st">    log_lik[n] = poisson_lpmf(y[n] | exp(x[n] * beta + intercept + offset_[n]));</span></span>
<span id="cb1-27"><a href="#cb1-27" aria-hidden="true" tabindex="-1"></a><span class="st">}</span></span>
<span id="cb1-28"><a href="#cb1-28" aria-hidden="true" tabindex="-1"></a><span class="st">&quot;</span></span></code></pre></div>
<p>Following the usual approach recommended in <a href="http://mc-stan.org/loo/articles/loo2-with-rstan.html"><em>Writing Stan programs for use with the loo package</em></a>, we compute the log-likelihood for each observation in the <code>generated quantities</code> block of the Stan program.</p>
</div>
<div id="setup" class="section level2">
<h2>Setup</h2>
<p>In addition to <strong>loo</strong>, we load the <strong>rstan</strong> package for fitting the model. We will also need the <strong>rstanarm</strong> package for the data.</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(<span class="st">&quot;rstan&quot;</span>)</span></code></pre></div>
<pre><code>Warning: package &#39;StanHeaders&#39; was built under R version 4.4.3</code></pre>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(<span class="st">&quot;loo&quot;</span>)</span>
<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a>seed <span class="ot">&lt;-</span> <span class="dv">9547</span></span>
<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(seed)</span></code></pre></div>
</div>
</div>
<div id="holdout-validation" class="section level1">
<h1>Holdout validation</h1>
<p>For this approach, the model is first fit to the “train” data and then is evaluated on the held-out “test” data.</p>
<div id="splitting-the-data-between-train-and-test" class="section level2">
<h2>Splitting the data between train and test</h2>
<p>The data is divided between train (80% of the data) and test (20%):</p>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Prepare data</span></span>
<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(roaches, <span class="at">package =</span> <span class="st">&quot;rstanarm&quot;</span>)</span>
<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a>roaches<span class="sc">$</span>roach1 <span class="ot">&lt;-</span> <span class="fu">sqrt</span>(roaches<span class="sc">$</span>roach1)</span>
<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a>roaches<span class="sc">$</span>offset <span class="ot">&lt;-</span> <span class="fu">log</span>(roaches[,<span class="st">&quot;exposure2&quot;</span>])</span>
<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a><span class="co"># 20% of the data goes to the test set:</span></span>
<span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a>roaches<span class="sc">$</span>test <span class="ot">&lt;-</span> <span class="dv">0</span></span>
<span id="cb5-7"><a href="#cb5-7" aria-hidden="true" tabindex="-1"></a>roaches<span class="sc">$</span>test[<span class="fu">sample</span>(.<span class="dv">2</span> <span class="sc">*</span> <span class="fu">seq_len</span>(<span class="fu">nrow</span>(roaches)))] <span class="ot">&lt;-</span> <span class="dv">1</span></span>
<span id="cb5-8"><a href="#cb5-8" aria-hidden="true" tabindex="-1"></a><span class="co"># data to &quot;train&quot; the model</span></span>
<span id="cb5-9"><a href="#cb5-9" aria-hidden="true" tabindex="-1"></a>data_train <span class="ot">&lt;-</span> <span class="fu">list</span>(<span class="at">y =</span> roaches<span class="sc">$</span>y[roaches<span class="sc">$</span>test <span class="sc">==</span> <span class="dv">0</span>],</span>
<span id="cb5-10"><a href="#cb5-10" aria-hidden="true" tabindex="-1"></a>                   <span class="at">x =</span> <span class="fu">as.matrix</span>(roaches[roaches<span class="sc">$</span>test <span class="sc">==</span> <span class="dv">0</span>,</span>
<span id="cb5-11"><a href="#cb5-11" aria-hidden="true" tabindex="-1"></a>                                         <span class="fu">c</span>(<span class="st">&quot;roach1&quot;</span>, <span class="st">&quot;treatment&quot;</span>, <span class="st">&quot;senior&quot;</span>)]),</span>
<span id="cb5-12"><a href="#cb5-12" aria-hidden="true" tabindex="-1"></a>                   <span class="at">N =</span> <span class="fu">nrow</span>(roaches[roaches<span class="sc">$</span>test <span class="sc">==</span> <span class="dv">0</span>,]),</span>
<span id="cb5-13"><a href="#cb5-13" aria-hidden="true" tabindex="-1"></a>                   <span class="at">K =</span> <span class="dv">3</span>,</span>
<span id="cb5-14"><a href="#cb5-14" aria-hidden="true" tabindex="-1"></a>                   <span class="at">offset_ =</span> roaches<span class="sc">$</span>offset[roaches<span class="sc">$</span>test <span class="sc">==</span> <span class="dv">0</span>],</span>
<span id="cb5-15"><a href="#cb5-15" aria-hidden="true" tabindex="-1"></a>                   <span class="at">beta_prior_scale =</span> <span class="fl">2.5</span>,</span>
<span id="cb5-16"><a href="#cb5-16" aria-hidden="true" tabindex="-1"></a>                   <span class="at">alpha_prior_scale =</span> <span class="fl">5.0</span></span>
<span id="cb5-17"><a href="#cb5-17" aria-hidden="true" tabindex="-1"></a>                   )</span>
<span id="cb5-18"><a href="#cb5-18" aria-hidden="true" tabindex="-1"></a><span class="co"># data to &quot;test&quot; the model</span></span>
<span id="cb5-19"><a href="#cb5-19" aria-hidden="true" tabindex="-1"></a>data_test <span class="ot">&lt;-</span> <span class="fu">list</span>(<span class="at">y =</span> roaches<span class="sc">$</span>y[roaches<span class="sc">$</span>test <span class="sc">==</span> <span class="dv">1</span>],</span>
<span id="cb5-20"><a href="#cb5-20" aria-hidden="true" tabindex="-1"></a>                   <span class="at">x =</span> <span class="fu">as.matrix</span>(roaches[roaches<span class="sc">$</span>test <span class="sc">==</span> <span class="dv">1</span>,</span>
<span id="cb5-21"><a href="#cb5-21" aria-hidden="true" tabindex="-1"></a>                                         <span class="fu">c</span>(<span class="st">&quot;roach1&quot;</span>, <span class="st">&quot;treatment&quot;</span>, <span class="st">&quot;senior&quot;</span>)]),</span>
<span id="cb5-22"><a href="#cb5-22" aria-hidden="true" tabindex="-1"></a>                   <span class="at">N =</span> <span class="fu">nrow</span>(roaches[roaches<span class="sc">$</span>test <span class="sc">==</span> <span class="dv">1</span>,]),</span>
<span id="cb5-23"><a href="#cb5-23" aria-hidden="true" tabindex="-1"></a>                   <span class="at">K =</span> <span class="dv">3</span>,</span>
<span id="cb5-24"><a href="#cb5-24" aria-hidden="true" tabindex="-1"></a>                   <span class="at">offset_ =</span> roaches<span class="sc">$</span>offset[roaches<span class="sc">$</span>test <span class="sc">==</span> <span class="dv">1</span>],</span>
<span id="cb5-25"><a href="#cb5-25" aria-hidden="true" tabindex="-1"></a>                   <span class="at">beta_prior_scale =</span> <span class="fl">2.5</span>,</span>
<span id="cb5-26"><a href="#cb5-26" aria-hidden="true" tabindex="-1"></a>                   <span class="at">alpha_prior_scale =</span> <span class="fl">5.0</span></span>
<span id="cb5-27"><a href="#cb5-27" aria-hidden="true" tabindex="-1"></a>                   )</span></code></pre></div>
</div>
<div id="fitting-the-model-with-rstan" class="section level2">
<h2>Fitting the model with RStan</h2>
<p>Next we fit the model to the “test” data in Stan using the <strong>rstan</strong> package:</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Compile</span></span>
<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a>stanmodel <span class="ot">&lt;-</span> <span class="fu">stan_model</span>(<span class="at">model_code =</span> stancode)</span>
<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a><span class="co"># Fit model</span></span>
<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a>fit <span class="ot">&lt;-</span> <span class="fu">sampling</span>(stanmodel, <span class="at">data =</span> data_train, <span class="at">seed =</span> seed, <span class="at">refresh =</span> <span class="dv">0</span>)</span></code></pre></div>
<p>We recompute the generated quantities using the posterior draws conditional on the training data, but we now pass in the held-out data to get the log predictive densities for the test data. Because we are using independent data, the log predictive density coincides with the log likelihood of the test data.</p>
<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a>gen_test <span class="ot">&lt;-</span> <span class="fu">gqs</span>(stanmodel, <span class="at">draws =</span> <span class="fu">as.matrix</span>(fit), <span class="at">data=</span> data_test)</span>
<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a>log_pd <span class="ot">&lt;-</span> <span class="fu">extract_log_lik</span>(gen_test)</span></code></pre></div>
</div>
<div id="computing-holdout-elpd" class="section level2">
<h2>Computing holdout elpd:</h2>
<p>Now we evaluate the predictive performance of the model on the test data using <code>elpd()</code>.</p>
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a>(elpd_holdout <span class="ot">&lt;-</span> <span class="fu">elpd</span>(log_pd))</span></code></pre></div>
<pre><code>
Computed from 4000 by 52 log-likelihood matrix using the generic elpd function

     Estimate    SE
elpd  -1734.5 288.3
ic     3468.9 576.6</code></pre>
<p>When one wants to compare different models, the function <code>loo_compare()</code> can be used to assess the difference in performance.</p>
</div>
</div>
<div id="k-fold-cross-validation" class="section level1">
<h1>K-fold cross validation</h1>
<p>For this approach the data is divided into folds, and each time one fold is tested while the rest of the data is used to fit the model (see Vehtari et al., 2017).</p>
<div id="splitting-the-data-in-folds" class="section level2">
<h2>Splitting the data in folds</h2>
<p>We use the data that is already pre-processed and we divide it in 10 random folds using <code>kfold_split_random</code></p>
<div class="sourceCode" id="cb10"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Prepare data</span></span>
<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a>roaches<span class="sc">$</span>fold <span class="ot">&lt;-</span> <span class="fu">kfold_split_random</span>(<span class="at">K =</span> <span class="dv">10</span>, <span class="at">N =</span> <span class="fu">nrow</span>(roaches))</span></code></pre></div>
</div>
<div id="fitting-and-extracting-the-log-pointwise-predictive-densities-for-each-fold" class="section level2">
<h2>Fitting and extracting the log pointwise predictive densities for each fold</h2>
<p>We now loop over the 10 folds. In each fold we do the following. First, we fit the model to all the observations except the ones belonging to the left-out fold. Second, we compute the log pointwise predictive densities for the left-out fold. Last, we store the predictive density for the observations of the left-out fold in a matrix. The output of this loop is a matrix of the log pointwise predictive densities of all the observations.</p>
<div class="sourceCode" id="cb11"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Prepare a matrix with the number of post-warmup iterations by number of observations:</span></span>
<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a>log_pd_kfold <span class="ot">&lt;-</span> <span class="fu">matrix</span>(<span class="at">nrow =</span> <span class="dv">4000</span>, <span class="at">ncol =</span> <span class="fu">nrow</span>(roaches))</span>
<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a><span class="co"># Loop over the folds</span></span>
<span id="cb11-4"><a href="#cb11-4" aria-hidden="true" tabindex="-1"></a><span class="cf">for</span>(k <span class="cf">in</span> <span class="dv">1</span><span class="sc">:</span><span class="dv">10</span>){</span>
<span id="cb11-5"><a href="#cb11-5" aria-hidden="true" tabindex="-1"></a>  data_train <span class="ot">&lt;-</span> <span class="fu">list</span>(<span class="at">y =</span> roaches<span class="sc">$</span>y[roaches<span class="sc">$</span>fold <span class="sc">!=</span> k],</span>
<span id="cb11-6"><a href="#cb11-6" aria-hidden="true" tabindex="-1"></a>                   <span class="at">x =</span> <span class="fu">as.matrix</span>(roaches[roaches<span class="sc">$</span>fold <span class="sc">!=</span> k,</span>
<span id="cb11-7"><a href="#cb11-7" aria-hidden="true" tabindex="-1"></a>                                         <span class="fu">c</span>(<span class="st">&quot;roach1&quot;</span>, <span class="st">&quot;treatment&quot;</span>, <span class="st">&quot;senior&quot;</span>)]),</span>
<span id="cb11-8"><a href="#cb11-8" aria-hidden="true" tabindex="-1"></a>                   <span class="at">N =</span> <span class="fu">nrow</span>(roaches[roaches<span class="sc">$</span>fold <span class="sc">!=</span> k,]),</span>
<span id="cb11-9"><a href="#cb11-9" aria-hidden="true" tabindex="-1"></a>                   <span class="at">K =</span> <span class="dv">3</span>,</span>
<span id="cb11-10"><a href="#cb11-10" aria-hidden="true" tabindex="-1"></a>                   <span class="at">offset_ =</span> roaches<span class="sc">$</span>offset[roaches<span class="sc">$</span>fold <span class="sc">!=</span> k],</span>
<span id="cb11-11"><a href="#cb11-11" aria-hidden="true" tabindex="-1"></a>                   <span class="at">beta_prior_scale =</span> <span class="fl">2.5</span>,</span>
<span id="cb11-12"><a href="#cb11-12" aria-hidden="true" tabindex="-1"></a>                   <span class="at">alpha_prior_scale =</span> <span class="fl">5.0</span></span>
<span id="cb11-13"><a href="#cb11-13" aria-hidden="true" tabindex="-1"></a>                   )</span>
<span id="cb11-14"><a href="#cb11-14" aria-hidden="true" tabindex="-1"></a>  data_test <span class="ot">&lt;-</span> <span class="fu">list</span>(<span class="at">y =</span> roaches<span class="sc">$</span>y[roaches<span class="sc">$</span>fold <span class="sc">==</span> k],</span>
<span id="cb11-15"><a href="#cb11-15" aria-hidden="true" tabindex="-1"></a>                   <span class="at">x =</span> <span class="fu">as.matrix</span>(roaches[roaches<span class="sc">$</span>fold <span class="sc">==</span> k,</span>
<span id="cb11-16"><a href="#cb11-16" aria-hidden="true" tabindex="-1"></a>                                         <span class="fu">c</span>(<span class="st">&quot;roach1&quot;</span>, <span class="st">&quot;treatment&quot;</span>, <span class="st">&quot;senior&quot;</span>)]),</span>
<span id="cb11-17"><a href="#cb11-17" aria-hidden="true" tabindex="-1"></a>                   <span class="at">N =</span> <span class="fu">nrow</span>(roaches[roaches<span class="sc">$</span>fold <span class="sc">==</span> k,]),</span>
<span id="cb11-18"><a href="#cb11-18" aria-hidden="true" tabindex="-1"></a>                   <span class="at">K =</span> <span class="dv">3</span>,</span>
<span id="cb11-19"><a href="#cb11-19" aria-hidden="true" tabindex="-1"></a>                   <span class="at">offset_ =</span> roaches<span class="sc">$</span>offset[roaches<span class="sc">$</span>fold <span class="sc">==</span> k],</span>
<span id="cb11-20"><a href="#cb11-20" aria-hidden="true" tabindex="-1"></a>                   <span class="at">beta_prior_scale =</span> <span class="fl">2.5</span>,</span>
<span id="cb11-21"><a href="#cb11-21" aria-hidden="true" tabindex="-1"></a>                   <span class="at">alpha_prior_scale =</span> <span class="fl">5.0</span></span>
<span id="cb11-22"><a href="#cb11-22" aria-hidden="true" tabindex="-1"></a>                   )</span>
<span id="cb11-23"><a href="#cb11-23" aria-hidden="true" tabindex="-1"></a>  fit <span class="ot">&lt;-</span> <span class="fu">sampling</span>(stanmodel, <span class="at">data =</span> data_train, <span class="at">seed =</span> seed, <span class="at">refresh =</span> <span class="dv">0</span>)</span>
<span id="cb11-24"><a href="#cb11-24" aria-hidden="true" tabindex="-1"></a>  gen_test <span class="ot">&lt;-</span> <span class="fu">gqs</span>(stanmodel, <span class="at">draws =</span> <span class="fu">as.matrix</span>(fit), <span class="at">data=</span> data_test)</span>
<span id="cb11-25"><a href="#cb11-25" aria-hidden="true" tabindex="-1"></a>  log_pd_kfold[, roaches<span class="sc">$</span>fold <span class="sc">==</span> k] <span class="ot">&lt;-</span> <span class="fu">extract_log_lik</span>(gen_test)</span>
<span id="cb11-26"><a href="#cb11-26" aria-hidden="true" tabindex="-1"></a>}</span></code></pre></div>
</div>
<div id="computing-k-fold-elpd" class="section level2">
<h2>Computing K-fold elpd:</h2>
<p>Now we evaluate the predictive performance of the model on the 10 folds using <code>elpd()</code>.</p>
<div class="sourceCode" id="cb12"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a>(elpd_kfold <span class="ot">&lt;-</span> <span class="fu">elpd</span>(log_pd_kfold))</span></code></pre></div>
<pre><code>
Computed from 4000 by 262 log-likelihood matrix using the generic elpd function

     Estimate     SE
elpd  -5558.1  729.0
ic    11116.2 1457.9</code></pre>
<p>If one wants to compare several models (with <code>loo_compare</code>), one should use the same folds for all the different models.</p>
</div>
</div>
<div id="references" class="section level1">
<h1>References</h1>
<p>Gelman, A., and Hill, J. (2007). <em>Data Analysis Using Regression and Multilevel Hierarchical Models.</em> Cambridge University Press.</p>
<p>Stan Development Team (2020) <em>RStan: the R interface to Stan, Version 2.21.1</em> <a href="https://mc-stan.org" class="uri">https://mc-stan.org</a></p>
<p>Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. <em>Statistics and Computing</em>. 27(5), 1413–1432. :10.1007/s11222-016-9696-4. Links: <a href="https://link.springer.com/article/10.1007/s11222-016-9696-4">published</a> | <a href="https://arxiv.org/abs/1507.04544">arXiv preprint</a>.</p>
</div>



<!-- code folding -->


<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
  (function () {
    var script = document.createElement("script");
    script.type = "text/javascript";
    script.src  = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
    document.getElementsByTagName("head")[0].appendChild(script);
  })();
</script>

</body>
</html>