1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
|
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="author" content="Bruno Nicenboim" />
<meta name="date" content="2025-12-22" />
<title>Holdout validation and K-fold cross-validation of Stan programs with the loo package</title>
<script>// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
// be compatible with the behavior of Pandoc < 2.8).
document.addEventListener('DOMContentLoaded', function(e) {
var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
var i, h, a;
for (i = 0; i < hs.length; i++) {
h = hs[i];
if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6
a = h.attributes;
while (a.length > 0) h.removeAttribute(a[0].name);
}
});
</script>
<style type="text/css">
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style>
<style type="text/css">
code {
white-space: pre;
}
.sourceCode {
overflow: visible;
}
</style>
<style type="text/css" data-origin="pandoc">
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #7d9029; } /* Attribute */
code span.bn { color: #40a070; } /* BaseN */
code span.bu { } /* BuiltIn */
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4070a0; } /* Char */
code span.cn { color: #880000; } /* Constant */
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
code span.dt { color: #902000; } /* DataType */
code span.dv { color: #40a070; } /* DecVal */
code span.er { color: #ff0000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #40a070; } /* Float */
code span.fu { color: #06287e; } /* Function */
code span.im { } /* Import */
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
code span.op { color: #666666; } /* Operator */
code span.ot { color: #007020; } /* Other */
code span.pp { color: #bc7a00; } /* Preprocessor */
code span.sc { color: #4070a0; } /* SpecialChar */
code span.ss { color: #bb6688; } /* SpecialString */
code span.st { color: #4070a0; } /* String */
code span.va { color: #19177c; } /* Variable */
code span.vs { color: #4070a0; } /* VerbatimString */
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
</style>
<script>
// apply pandoc div.sourceCode style to pre.sourceCode instead
(function() {
var sheets = document.styleSheets;
for (var i = 0; i < sheets.length; i++) {
if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue;
try { var rules = sheets[i].cssRules; } catch (e) { continue; }
var j = 0;
while (j < rules.length) {
var rule = rules[j];
// check if there is a div.sourceCode rule
if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") {
j++;
continue;
}
var style = rule.style.cssText;
// check if color or background-color is set
if (rule.style.color === '' && rule.style.backgroundColor === '') {
j++;
continue;
}
// replace div.sourceCode by a pre.sourceCode rule
sheets[i].deleteRule(j);
sheets[i].insertRule('pre.sourceCode{' + style + '}', j);
}
}
})();
</script>
<style type="text/css">body {
background-color: #fff;
margin: 1em auto;
max-width: 700px;
overflow: visible;
padding-left: 2em;
padding-right: 2em;
font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
font-size: 14px;
line-height: 1.35;
}
#TOC {
clear: both;
margin: 0 0 10px 10px;
padding: 4px;
width: 400px;
border: 1px solid #CCCCCC;
border-radius: 5px;
background-color: #f6f6f6;
font-size: 13px;
line-height: 1.3;
}
#TOC .toctitle {
font-weight: bold;
font-size: 15px;
margin-left: 5px;
}
#TOC ul {
padding-left: 40px;
margin-left: -1.5em;
margin-top: 5px;
margin-bottom: 5px;
}
#TOC ul ul {
margin-left: -2em;
}
#TOC li {
line-height: 16px;
}
table {
margin: 1em auto;
border-width: 1px;
border-color: #DDDDDD;
border-style: outset;
border-collapse: collapse;
}
table th {
border-width: 2px;
padding: 5px;
border-style: inset;
}
table td {
border-width: 1px;
border-style: inset;
line-height: 18px;
padding: 5px 5px;
}
table, table th, table td {
border-left-style: none;
border-right-style: none;
}
table thead, table tr.even {
background-color: #f7f7f7;
}
p {
margin: 0.5em 0;
}
blockquote {
background-color: #f6f6f6;
padding: 0.25em 0.75em;
}
hr {
border-style: solid;
border: none;
border-top: 1px solid #777;
margin: 28px 0;
}
dl {
margin-left: 0;
}
dl dd {
margin-bottom: 13px;
margin-left: 13px;
}
dl dt {
font-weight: bold;
}
ul {
margin-top: 0;
}
ul li {
list-style: circle outside;
}
ul ul {
margin-bottom: 0;
}
pre, code {
background-color: #f7f7f7;
border-radius: 3px;
color: #333;
white-space: pre-wrap;
}
pre {
border-radius: 3px;
margin: 5px 0px 10px 0px;
padding: 10px;
}
pre:not([class]) {
background-color: #f7f7f7;
}
code {
font-family: Consolas, Monaco, 'Courier New', monospace;
font-size: 85%;
}
p > code, li > code {
padding: 2px 0px;
}
div.figure {
text-align: center;
}
img {
background-color: #FFFFFF;
padding: 2px;
border: 1px solid #DDDDDD;
border-radius: 3px;
border: 1px solid #CCCCCC;
margin: 0 5px;
}
h1 {
margin-top: 0;
font-size: 35px;
line-height: 40px;
}
h2 {
border-bottom: 4px solid #f7f7f7;
padding-top: 10px;
padding-bottom: 2px;
font-size: 145%;
}
h3 {
border-bottom: 2px solid #f7f7f7;
padding-top: 10px;
font-size: 120%;
}
h4 {
border-bottom: 1px solid #f7f7f7;
margin-left: 8px;
font-size: 105%;
}
h5, h6 {
border-bottom: 1px solid #ccc;
font-size: 105%;
}
a {
color: #0033dd;
text-decoration: none;
}
a:hover {
color: #6666ff; }
a:visited {
color: #800080; }
a:visited:hover {
color: #BB00BB; }
a[href^="http:"] {
text-decoration: underline; }
a[href^="https:"] {
text-decoration: underline; }
code > span.kw { color: #555; font-weight: bold; }
code > span.dt { color: #902000; }
code > span.dv { color: #40a070; }
code > span.bn { color: #d14; }
code > span.fl { color: #d14; }
code > span.ch { color: #d14; }
code > span.st { color: #d14; }
code > span.co { color: #888888; font-style: italic; }
code > span.ot { color: #007020; }
code > span.al { color: #ff0000; font-weight: bold; }
code > span.fu { color: #900; font-weight: bold; }
code > span.er { color: #a61717; background-color: #e3d2d2; }
</style>
</head>
<body>
<h1 class="title toc-ignore">Holdout validation and K-fold cross-validation of Stan programs with the loo package</h1>
<h4 class="author">Bruno Nicenboim</h4>
<h4 class="date">2025-12-22</h4>
<div id="TOC">
<ul>
<li><a href="#introduction">Introduction</a></li>
<li><a href="#example-eradication-of-roaches-using-holdout-validation-approach">Example: Eradication of Roaches using holdout validation approach</a>
<ul>
<li><a href="#coding-the-stan-model">Coding the Stan model</a></li>
<li><a href="#setup">Setup</a></li>
</ul></li>
<li><a href="#holdout-validation">Holdout validation</a>
<ul>
<li><a href="#splitting-the-data-between-train-and-test">Splitting the data between train and test</a></li>
<li><a href="#fitting-the-model-with-rstan">Fitting the model with RStan</a></li>
<li><a href="#computing-holdout-elpd">Computing holdout elpd:</a></li>
</ul></li>
<li><a href="#k-fold-cross-validation">K-fold cross validation</a>
<ul>
<li><a href="#splitting-the-data-in-folds">Splitting the data in folds</a></li>
<li><a href="#fitting-and-extracting-the-log-pointwise-predictive-densities-for-each-fold">Fitting and extracting the log pointwise predictive densities for each fold</a></li>
<li><a href="#computing-k-fold-elpd">Computing K-fold elpd:</a></li>
</ul></li>
<li><a href="#references">References</a></li>
</ul>
</div>
<!--
%\VignetteEngine{knitr::rmarkdown}
%\VignetteIndexEntry{Holdout validation and K-fold cross-validation of Stan programs with the loo package}
-->
<div id="introduction" class="section level1">
<h1>Introduction</h1>
<p>This vignette demonstrates how to do holdout validation and K-fold cross-validation with <strong>loo</strong> for a Stan program.</p>
</div>
<div id="example-eradication-of-roaches-using-holdout-validation-approach" class="section level1">
<h1>Example: Eradication of Roaches using holdout validation approach</h1>
<p>This vignette uses the same example as in the vignettes <a href="http://mc-stan.org/loo/articles/loo2-example.html"><em>Using the loo package (version >= 2.0.0)</em></a> and <a href="https://mc-stan.org/loo/articles/loo2-moment-matching.html"><em>Avoiding model refits in leave-one-out cross-validation with moment matching</em></a>.</p>
<div id="coding-the-stan-model" class="section level2">
<h2>Coding the Stan model</h2>
<p>Here is the Stan code for fitting a Poisson regression model:</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Note: some syntax used in this Stan program requires RStan >= 2.26 (or CmdStanR)</span></span>
<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="co"># To use an older version of RStan change the line declaring `y` to: int y[N];</span></span>
<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a>stancode <span class="ot"><-</span> <span class="st">"</span></span>
<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="st">data {</span></span>
<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a><span class="st"> int<lower=1> K;</span></span>
<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a><span class="st"> int<lower=1> N;</span></span>
<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a><span class="st"> matrix[N,K] x;</span></span>
<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a><span class="st"> array[N] int y;</span></span>
<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a><span class="st"> vector[N] offset_; // offset is reserved keyword in Stan so use offset_</span></span>
<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a><span class="st"> real beta_prior_scale;</span></span>
<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a><span class="st"> real alpha_prior_scale;</span></span>
<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a><span class="st">}</span></span>
<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a><span class="st">parameters {</span></span>
<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a><span class="st"> vector[K] beta;</span></span>
<span id="cb1-16"><a href="#cb1-16" aria-hidden="true" tabindex="-1"></a><span class="st"> real intercept;</span></span>
<span id="cb1-17"><a href="#cb1-17" aria-hidden="true" tabindex="-1"></a><span class="st">}</span></span>
<span id="cb1-18"><a href="#cb1-18" aria-hidden="true" tabindex="-1"></a><span class="st">model {</span></span>
<span id="cb1-19"><a href="#cb1-19" aria-hidden="true" tabindex="-1"></a><span class="st"> y ~ poisson(exp(x * beta + intercept + offset_));</span></span>
<span id="cb1-20"><a href="#cb1-20" aria-hidden="true" tabindex="-1"></a><span class="st"> beta ~ normal(0,beta_prior_scale);</span></span>
<span id="cb1-21"><a href="#cb1-21" aria-hidden="true" tabindex="-1"></a><span class="st"> intercept ~ normal(0,alpha_prior_scale);</span></span>
<span id="cb1-22"><a href="#cb1-22" aria-hidden="true" tabindex="-1"></a><span class="st">}</span></span>
<span id="cb1-23"><a href="#cb1-23" aria-hidden="true" tabindex="-1"></a><span class="st">generated quantities {</span></span>
<span id="cb1-24"><a href="#cb1-24" aria-hidden="true" tabindex="-1"></a><span class="st"> vector[N] log_lik;</span></span>
<span id="cb1-25"><a href="#cb1-25" aria-hidden="true" tabindex="-1"></a><span class="st"> for (n in 1:N)</span></span>
<span id="cb1-26"><a href="#cb1-26" aria-hidden="true" tabindex="-1"></a><span class="st"> log_lik[n] = poisson_lpmf(y[n] | exp(x[n] * beta + intercept + offset_[n]));</span></span>
<span id="cb1-27"><a href="#cb1-27" aria-hidden="true" tabindex="-1"></a><span class="st">}</span></span>
<span id="cb1-28"><a href="#cb1-28" aria-hidden="true" tabindex="-1"></a><span class="st">"</span></span></code></pre></div>
<p>Following the usual approach recommended in <a href="http://mc-stan.org/loo/articles/loo2-with-rstan.html"><em>Writing Stan programs for use with the loo package</em></a>, we compute the log-likelihood for each observation in the <code>generated quantities</code> block of the Stan program.</p>
</div>
<div id="setup" class="section level2">
<h2>Setup</h2>
<p>In addition to <strong>loo</strong>, we load the <strong>rstan</strong> package for fitting the model. We will also need the <strong>rstanarm</strong> package for the data.</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(<span class="st">"rstan"</span>)</span></code></pre></div>
<pre><code>Warning: package 'StanHeaders' was built under R version 4.4.3</code></pre>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(<span class="st">"loo"</span>)</span>
<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a>seed <span class="ot"><-</span> <span class="dv">9547</span></span>
<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(seed)</span></code></pre></div>
</div>
</div>
<div id="holdout-validation" class="section level1">
<h1>Holdout validation</h1>
<p>For this approach, the model is first fit to the “train” data and then is evaluated on the held-out “test” data.</p>
<div id="splitting-the-data-between-train-and-test" class="section level2">
<h2>Splitting the data between train and test</h2>
<p>The data is divided between train (80% of the data) and test (20%):</p>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Prepare data</span></span>
<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(roaches, <span class="at">package =</span> <span class="st">"rstanarm"</span>)</span>
<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a>roaches<span class="sc">$</span>roach1 <span class="ot"><-</span> <span class="fu">sqrt</span>(roaches<span class="sc">$</span>roach1)</span>
<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a>roaches<span class="sc">$</span>offset <span class="ot"><-</span> <span class="fu">log</span>(roaches[,<span class="st">"exposure2"</span>])</span>
<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a><span class="co"># 20% of the data goes to the test set:</span></span>
<span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a>roaches<span class="sc">$</span>test <span class="ot"><-</span> <span class="dv">0</span></span>
<span id="cb5-7"><a href="#cb5-7" aria-hidden="true" tabindex="-1"></a>roaches<span class="sc">$</span>test[<span class="fu">sample</span>(.<span class="dv">2</span> <span class="sc">*</span> <span class="fu">seq_len</span>(<span class="fu">nrow</span>(roaches)))] <span class="ot"><-</span> <span class="dv">1</span></span>
<span id="cb5-8"><a href="#cb5-8" aria-hidden="true" tabindex="-1"></a><span class="co"># data to "train" the model</span></span>
<span id="cb5-9"><a href="#cb5-9" aria-hidden="true" tabindex="-1"></a>data_train <span class="ot"><-</span> <span class="fu">list</span>(<span class="at">y =</span> roaches<span class="sc">$</span>y[roaches<span class="sc">$</span>test <span class="sc">==</span> <span class="dv">0</span>],</span>
<span id="cb5-10"><a href="#cb5-10" aria-hidden="true" tabindex="-1"></a> <span class="at">x =</span> <span class="fu">as.matrix</span>(roaches[roaches<span class="sc">$</span>test <span class="sc">==</span> <span class="dv">0</span>,</span>
<span id="cb5-11"><a href="#cb5-11" aria-hidden="true" tabindex="-1"></a> <span class="fu">c</span>(<span class="st">"roach1"</span>, <span class="st">"treatment"</span>, <span class="st">"senior"</span>)]),</span>
<span id="cb5-12"><a href="#cb5-12" aria-hidden="true" tabindex="-1"></a> <span class="at">N =</span> <span class="fu">nrow</span>(roaches[roaches<span class="sc">$</span>test <span class="sc">==</span> <span class="dv">0</span>,]),</span>
<span id="cb5-13"><a href="#cb5-13" aria-hidden="true" tabindex="-1"></a> <span class="at">K =</span> <span class="dv">3</span>,</span>
<span id="cb5-14"><a href="#cb5-14" aria-hidden="true" tabindex="-1"></a> <span class="at">offset_ =</span> roaches<span class="sc">$</span>offset[roaches<span class="sc">$</span>test <span class="sc">==</span> <span class="dv">0</span>],</span>
<span id="cb5-15"><a href="#cb5-15" aria-hidden="true" tabindex="-1"></a> <span class="at">beta_prior_scale =</span> <span class="fl">2.5</span>,</span>
<span id="cb5-16"><a href="#cb5-16" aria-hidden="true" tabindex="-1"></a> <span class="at">alpha_prior_scale =</span> <span class="fl">5.0</span></span>
<span id="cb5-17"><a href="#cb5-17" aria-hidden="true" tabindex="-1"></a> )</span>
<span id="cb5-18"><a href="#cb5-18" aria-hidden="true" tabindex="-1"></a><span class="co"># data to "test" the model</span></span>
<span id="cb5-19"><a href="#cb5-19" aria-hidden="true" tabindex="-1"></a>data_test <span class="ot"><-</span> <span class="fu">list</span>(<span class="at">y =</span> roaches<span class="sc">$</span>y[roaches<span class="sc">$</span>test <span class="sc">==</span> <span class="dv">1</span>],</span>
<span id="cb5-20"><a href="#cb5-20" aria-hidden="true" tabindex="-1"></a> <span class="at">x =</span> <span class="fu">as.matrix</span>(roaches[roaches<span class="sc">$</span>test <span class="sc">==</span> <span class="dv">1</span>,</span>
<span id="cb5-21"><a href="#cb5-21" aria-hidden="true" tabindex="-1"></a> <span class="fu">c</span>(<span class="st">"roach1"</span>, <span class="st">"treatment"</span>, <span class="st">"senior"</span>)]),</span>
<span id="cb5-22"><a href="#cb5-22" aria-hidden="true" tabindex="-1"></a> <span class="at">N =</span> <span class="fu">nrow</span>(roaches[roaches<span class="sc">$</span>test <span class="sc">==</span> <span class="dv">1</span>,]),</span>
<span id="cb5-23"><a href="#cb5-23" aria-hidden="true" tabindex="-1"></a> <span class="at">K =</span> <span class="dv">3</span>,</span>
<span id="cb5-24"><a href="#cb5-24" aria-hidden="true" tabindex="-1"></a> <span class="at">offset_ =</span> roaches<span class="sc">$</span>offset[roaches<span class="sc">$</span>test <span class="sc">==</span> <span class="dv">1</span>],</span>
<span id="cb5-25"><a href="#cb5-25" aria-hidden="true" tabindex="-1"></a> <span class="at">beta_prior_scale =</span> <span class="fl">2.5</span>,</span>
<span id="cb5-26"><a href="#cb5-26" aria-hidden="true" tabindex="-1"></a> <span class="at">alpha_prior_scale =</span> <span class="fl">5.0</span></span>
<span id="cb5-27"><a href="#cb5-27" aria-hidden="true" tabindex="-1"></a> )</span></code></pre></div>
</div>
<div id="fitting-the-model-with-rstan" class="section level2">
<h2>Fitting the model with RStan</h2>
<p>Next we fit the model to the “test” data in Stan using the <strong>rstan</strong> package:</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Compile</span></span>
<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a>stanmodel <span class="ot"><-</span> <span class="fu">stan_model</span>(<span class="at">model_code =</span> stancode)</span>
<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a><span class="co"># Fit model</span></span>
<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a>fit <span class="ot"><-</span> <span class="fu">sampling</span>(stanmodel, <span class="at">data =</span> data_train, <span class="at">seed =</span> seed, <span class="at">refresh =</span> <span class="dv">0</span>)</span></code></pre></div>
<p>We recompute the generated quantities using the posterior draws conditional on the training data, but we now pass in the held-out data to get the log predictive densities for the test data. Because we are using independent data, the log predictive density coincides with the log likelihood of the test data.</p>
<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a>gen_test <span class="ot"><-</span> <span class="fu">gqs</span>(stanmodel, <span class="at">draws =</span> <span class="fu">as.matrix</span>(fit), <span class="at">data=</span> data_test)</span>
<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a>log_pd <span class="ot"><-</span> <span class="fu">extract_log_lik</span>(gen_test)</span></code></pre></div>
</div>
<div id="computing-holdout-elpd" class="section level2">
<h2>Computing holdout elpd:</h2>
<p>Now we evaluate the predictive performance of the model on the test data using <code>elpd()</code>.</p>
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a>(elpd_holdout <span class="ot"><-</span> <span class="fu">elpd</span>(log_pd))</span></code></pre></div>
<pre><code>
Computed from 4000 by 52 log-likelihood matrix using the generic elpd function
Estimate SE
elpd -1734.5 288.3
ic 3468.9 576.6</code></pre>
<p>When one wants to compare different models, the function <code>loo_compare()</code> can be used to assess the difference in performance.</p>
</div>
</div>
<div id="k-fold-cross-validation" class="section level1">
<h1>K-fold cross validation</h1>
<p>For this approach the data is divided into folds, and each time one fold is tested while the rest of the data is used to fit the model (see Vehtari et al., 2017).</p>
<div id="splitting-the-data-in-folds" class="section level2">
<h2>Splitting the data in folds</h2>
<p>We use the data that is already pre-processed and we divide it in 10 random folds using <code>kfold_split_random</code></p>
<div class="sourceCode" id="cb10"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Prepare data</span></span>
<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a>roaches<span class="sc">$</span>fold <span class="ot"><-</span> <span class="fu">kfold_split_random</span>(<span class="at">K =</span> <span class="dv">10</span>, <span class="at">N =</span> <span class="fu">nrow</span>(roaches))</span></code></pre></div>
</div>
<div id="fitting-and-extracting-the-log-pointwise-predictive-densities-for-each-fold" class="section level2">
<h2>Fitting and extracting the log pointwise predictive densities for each fold</h2>
<p>We now loop over the 10 folds. In each fold we do the following. First, we fit the model to all the observations except the ones belonging to the left-out fold. Second, we compute the log pointwise predictive densities for the left-out fold. Last, we store the predictive density for the observations of the left-out fold in a matrix. The output of this loop is a matrix of the log pointwise predictive densities of all the observations.</p>
<div class="sourceCode" id="cb11"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Prepare a matrix with the number of post-warmup iterations by number of observations:</span></span>
<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a>log_pd_kfold <span class="ot"><-</span> <span class="fu">matrix</span>(<span class="at">nrow =</span> <span class="dv">4000</span>, <span class="at">ncol =</span> <span class="fu">nrow</span>(roaches))</span>
<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a><span class="co"># Loop over the folds</span></span>
<span id="cb11-4"><a href="#cb11-4" aria-hidden="true" tabindex="-1"></a><span class="cf">for</span>(k <span class="cf">in</span> <span class="dv">1</span><span class="sc">:</span><span class="dv">10</span>){</span>
<span id="cb11-5"><a href="#cb11-5" aria-hidden="true" tabindex="-1"></a> data_train <span class="ot"><-</span> <span class="fu">list</span>(<span class="at">y =</span> roaches<span class="sc">$</span>y[roaches<span class="sc">$</span>fold <span class="sc">!=</span> k],</span>
<span id="cb11-6"><a href="#cb11-6" aria-hidden="true" tabindex="-1"></a> <span class="at">x =</span> <span class="fu">as.matrix</span>(roaches[roaches<span class="sc">$</span>fold <span class="sc">!=</span> k,</span>
<span id="cb11-7"><a href="#cb11-7" aria-hidden="true" tabindex="-1"></a> <span class="fu">c</span>(<span class="st">"roach1"</span>, <span class="st">"treatment"</span>, <span class="st">"senior"</span>)]),</span>
<span id="cb11-8"><a href="#cb11-8" aria-hidden="true" tabindex="-1"></a> <span class="at">N =</span> <span class="fu">nrow</span>(roaches[roaches<span class="sc">$</span>fold <span class="sc">!=</span> k,]),</span>
<span id="cb11-9"><a href="#cb11-9" aria-hidden="true" tabindex="-1"></a> <span class="at">K =</span> <span class="dv">3</span>,</span>
<span id="cb11-10"><a href="#cb11-10" aria-hidden="true" tabindex="-1"></a> <span class="at">offset_ =</span> roaches<span class="sc">$</span>offset[roaches<span class="sc">$</span>fold <span class="sc">!=</span> k],</span>
<span id="cb11-11"><a href="#cb11-11" aria-hidden="true" tabindex="-1"></a> <span class="at">beta_prior_scale =</span> <span class="fl">2.5</span>,</span>
<span id="cb11-12"><a href="#cb11-12" aria-hidden="true" tabindex="-1"></a> <span class="at">alpha_prior_scale =</span> <span class="fl">5.0</span></span>
<span id="cb11-13"><a href="#cb11-13" aria-hidden="true" tabindex="-1"></a> )</span>
<span id="cb11-14"><a href="#cb11-14" aria-hidden="true" tabindex="-1"></a> data_test <span class="ot"><-</span> <span class="fu">list</span>(<span class="at">y =</span> roaches<span class="sc">$</span>y[roaches<span class="sc">$</span>fold <span class="sc">==</span> k],</span>
<span id="cb11-15"><a href="#cb11-15" aria-hidden="true" tabindex="-1"></a> <span class="at">x =</span> <span class="fu">as.matrix</span>(roaches[roaches<span class="sc">$</span>fold <span class="sc">==</span> k,</span>
<span id="cb11-16"><a href="#cb11-16" aria-hidden="true" tabindex="-1"></a> <span class="fu">c</span>(<span class="st">"roach1"</span>, <span class="st">"treatment"</span>, <span class="st">"senior"</span>)]),</span>
<span id="cb11-17"><a href="#cb11-17" aria-hidden="true" tabindex="-1"></a> <span class="at">N =</span> <span class="fu">nrow</span>(roaches[roaches<span class="sc">$</span>fold <span class="sc">==</span> k,]),</span>
<span id="cb11-18"><a href="#cb11-18" aria-hidden="true" tabindex="-1"></a> <span class="at">K =</span> <span class="dv">3</span>,</span>
<span id="cb11-19"><a href="#cb11-19" aria-hidden="true" tabindex="-1"></a> <span class="at">offset_ =</span> roaches<span class="sc">$</span>offset[roaches<span class="sc">$</span>fold <span class="sc">==</span> k],</span>
<span id="cb11-20"><a href="#cb11-20" aria-hidden="true" tabindex="-1"></a> <span class="at">beta_prior_scale =</span> <span class="fl">2.5</span>,</span>
<span id="cb11-21"><a href="#cb11-21" aria-hidden="true" tabindex="-1"></a> <span class="at">alpha_prior_scale =</span> <span class="fl">5.0</span></span>
<span id="cb11-22"><a href="#cb11-22" aria-hidden="true" tabindex="-1"></a> )</span>
<span id="cb11-23"><a href="#cb11-23" aria-hidden="true" tabindex="-1"></a> fit <span class="ot"><-</span> <span class="fu">sampling</span>(stanmodel, <span class="at">data =</span> data_train, <span class="at">seed =</span> seed, <span class="at">refresh =</span> <span class="dv">0</span>)</span>
<span id="cb11-24"><a href="#cb11-24" aria-hidden="true" tabindex="-1"></a> gen_test <span class="ot"><-</span> <span class="fu">gqs</span>(stanmodel, <span class="at">draws =</span> <span class="fu">as.matrix</span>(fit), <span class="at">data=</span> data_test)</span>
<span id="cb11-25"><a href="#cb11-25" aria-hidden="true" tabindex="-1"></a> log_pd_kfold[, roaches<span class="sc">$</span>fold <span class="sc">==</span> k] <span class="ot"><-</span> <span class="fu">extract_log_lik</span>(gen_test)</span>
<span id="cb11-26"><a href="#cb11-26" aria-hidden="true" tabindex="-1"></a>}</span></code></pre></div>
</div>
<div id="computing-k-fold-elpd" class="section level2">
<h2>Computing K-fold elpd:</h2>
<p>Now we evaluate the predictive performance of the model on the 10 folds using <code>elpd()</code>.</p>
<div class="sourceCode" id="cb12"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a>(elpd_kfold <span class="ot"><-</span> <span class="fu">elpd</span>(log_pd_kfold))</span></code></pre></div>
<pre><code>
Computed from 4000 by 262 log-likelihood matrix using the generic elpd function
Estimate SE
elpd -5558.1 729.0
ic 11116.2 1457.9</code></pre>
<p>If one wants to compare several models (with <code>loo_compare</code>), one should use the same folds for all the different models.</p>
</div>
</div>
<div id="references" class="section level1">
<h1>References</h1>
<p>Gelman, A., and Hill, J. (2007). <em>Data Analysis Using Regression and Multilevel Hierarchical Models.</em> Cambridge University Press.</p>
<p>Stan Development Team (2020) <em>RStan: the R interface to Stan, Version 2.21.1</em> <a href="https://mc-stan.org" class="uri">https://mc-stan.org</a></p>
<p>Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. <em>Statistics and Computing</em>. 27(5), 1413–1432. :10.1007/s11222-016-9696-4. Links: <a href="https://link.springer.com/article/10.1007/s11222-016-9696-4">published</a> | <a href="https://arxiv.org/abs/1507.04544">arXiv preprint</a>.</p>
</div>
<!-- code folding -->
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>
|