1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
|
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="author" content="Aki Vehtari and Jonah Gabry" />
<meta name="date" content="2025-12-22" />
<title>Using the loo package (version >= 2.0.0)</title>
<script>// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
// be compatible with the behavior of Pandoc < 2.8).
document.addEventListener('DOMContentLoaded', function(e) {
var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
var i, h, a;
for (i = 0; i < hs.length; i++) {
h = hs[i];
if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6
a = h.attributes;
while (a.length > 0) h.removeAttribute(a[0].name);
}
});
</script>
<style type="text/css">
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style>
<style type="text/css">
code {
white-space: pre;
}
.sourceCode {
overflow: visible;
}
</style>
<style type="text/css" data-origin="pandoc">
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #7d9029; } /* Attribute */
code span.bn { color: #40a070; } /* BaseN */
code span.bu { } /* BuiltIn */
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4070a0; } /* Char */
code span.cn { color: #880000; } /* Constant */
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
code span.dt { color: #902000; } /* DataType */
code span.dv { color: #40a070; } /* DecVal */
code span.er { color: #ff0000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #40a070; } /* Float */
code span.fu { color: #06287e; } /* Function */
code span.im { } /* Import */
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
code span.op { color: #666666; } /* Operator */
code span.ot { color: #007020; } /* Other */
code span.pp { color: #bc7a00; } /* Preprocessor */
code span.sc { color: #4070a0; } /* SpecialChar */
code span.ss { color: #bb6688; } /* SpecialString */
code span.st { color: #4070a0; } /* String */
code span.va { color: #19177c; } /* Variable */
code span.vs { color: #4070a0; } /* VerbatimString */
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
</style>
<script>
// apply pandoc div.sourceCode style to pre.sourceCode instead
(function() {
var sheets = document.styleSheets;
for (var i = 0; i < sheets.length; i++) {
if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue;
try { var rules = sheets[i].cssRules; } catch (e) { continue; }
var j = 0;
while (j < rules.length) {
var rule = rules[j];
// check if there is a div.sourceCode rule
if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") {
j++;
continue;
}
var style = rule.style.cssText;
// check if color or background-color is set
if (rule.style.color === '' && rule.style.backgroundColor === '') {
j++;
continue;
}
// replace div.sourceCode by a pre.sourceCode rule
sheets[i].deleteRule(j);
sheets[i].insertRule('pre.sourceCode{' + style + '}', j);
}
}
})();
</script>
<style type="text/css">body {
background-color: #fff;
margin: 1em auto;
max-width: 700px;
overflow: visible;
padding-left: 2em;
padding-right: 2em;
font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
font-size: 14px;
line-height: 1.35;
}
#TOC {
clear: both;
margin: 0 0 10px 10px;
padding: 4px;
width: 400px;
border: 1px solid #CCCCCC;
border-radius: 5px;
background-color: #f6f6f6;
font-size: 13px;
line-height: 1.3;
}
#TOC .toctitle {
font-weight: bold;
font-size: 15px;
margin-left: 5px;
}
#TOC ul {
padding-left: 40px;
margin-left: -1.5em;
margin-top: 5px;
margin-bottom: 5px;
}
#TOC ul ul {
margin-left: -2em;
}
#TOC li {
line-height: 16px;
}
table {
margin: 1em auto;
border-width: 1px;
border-color: #DDDDDD;
border-style: outset;
border-collapse: collapse;
}
table th {
border-width: 2px;
padding: 5px;
border-style: inset;
}
table td {
border-width: 1px;
border-style: inset;
line-height: 18px;
padding: 5px 5px;
}
table, table th, table td {
border-left-style: none;
border-right-style: none;
}
table thead, table tr.even {
background-color: #f7f7f7;
}
p {
margin: 0.5em 0;
}
blockquote {
background-color: #f6f6f6;
padding: 0.25em 0.75em;
}
hr {
border-style: solid;
border: none;
border-top: 1px solid #777;
margin: 28px 0;
}
dl {
margin-left: 0;
}
dl dd {
margin-bottom: 13px;
margin-left: 13px;
}
dl dt {
font-weight: bold;
}
ul {
margin-top: 0;
}
ul li {
list-style: circle outside;
}
ul ul {
margin-bottom: 0;
}
pre, code {
background-color: #f7f7f7;
border-radius: 3px;
color: #333;
white-space: pre-wrap;
}
pre {
border-radius: 3px;
margin: 5px 0px 10px 0px;
padding: 10px;
}
pre:not([class]) {
background-color: #f7f7f7;
}
code {
font-family: Consolas, Monaco, 'Courier New', monospace;
font-size: 85%;
}
p > code, li > code {
padding: 2px 0px;
}
div.figure {
text-align: center;
}
img {
background-color: #FFFFFF;
padding: 2px;
border: 1px solid #DDDDDD;
border-radius: 3px;
border: 1px solid #CCCCCC;
margin: 0 5px;
}
h1 {
margin-top: 0;
font-size: 35px;
line-height: 40px;
}
h2 {
border-bottom: 4px solid #f7f7f7;
padding-top: 10px;
padding-bottom: 2px;
font-size: 145%;
}
h3 {
border-bottom: 2px solid #f7f7f7;
padding-top: 10px;
font-size: 120%;
}
h4 {
border-bottom: 1px solid #f7f7f7;
margin-left: 8px;
font-size: 105%;
}
h5, h6 {
border-bottom: 1px solid #ccc;
font-size: 105%;
}
a {
color: #0033dd;
text-decoration: none;
}
a:hover {
color: #6666ff; }
a:visited {
color: #800080; }
a:visited:hover {
color: #BB00BB; }
a[href^="http:"] {
text-decoration: underline; }
a[href^="https:"] {
text-decoration: underline; }
code > span.kw { color: #555; font-weight: bold; }
code > span.dt { color: #902000; }
code > span.dv { color: #40a070; }
code > span.bn { color: #d14; }
code > span.fl { color: #d14; }
code > span.ch { color: #d14; }
code > span.st { color: #d14; }
code > span.co { color: #888888; font-style: italic; }
code > span.ot { color: #007020; }
code > span.al { color: #ff0000; font-weight: bold; }
code > span.fu { color: #900; font-weight: bold; }
code > span.er { color: #a61717; background-color: #e3d2d2; }
</style>
</head>
<body>
<h1 class="title toc-ignore">Using the loo package (version >= 2.0.0)</h1>
<h4 class="author">Aki Vehtari and Jonah Gabry</h4>
<h4 class="date">2025-12-22</h4>
<div id="TOC">
<ul>
<li><a href="#introduction">Introduction</a></li>
<li><a href="#setup">Setup</a></li>
<li><a href="#example-poisson-vs-negative-binomial-for-the-roaches-dataset">Example: Poisson vs negative binomial for the roaches dataset</a>
<ul>
<li><a href="#background-and-model-fitting">Background and model fitting</a>
<ul>
<li><a href="#roaches-data">Roaches data</a></li>
<li><a href="#fit-poisson-model">Fit Poisson model</a></li>
</ul></li>
<li><a href="#using-the-loo-package-for-model-checking-and-comparison">Using the <strong>loo</strong> package for model checking and comparison</a>
<ul>
<li><a href="#computing-psis-loo-and-checking-diagnostics">Computing PSIS-LOO and checking diagnostics</a></li>
<li><a href="#plotting-pareto-k-diagnostics">Plotting Pareto <span class="math inline">\(k\)</span> diagnostics</a></li>
<li><a href="#marginal-posterior-predictive-checks">Marginal posterior predictive checks</a></li>
</ul></li>
<li><a href="#try-alternative-model-with-more-flexibility">Try alternative model with more flexibility</a></li>
<li><a href="#comparing-the-models-on-expected-log-predictive-density">Comparing the models on expected log predictive density</a></li>
</ul></li>
<li><a href="#references">References</a></li>
</ul>
</div>
<!--
%\VignetteEngine{knitr::rmarkdown}
%\VignetteIndexEntry{Using the loo package}
-->
<div id="introduction" class="section level1">
<h1>Introduction</h1>
<p>This vignette demonstrates how to use the <strong>loo</strong> package to carry out Pareto smoothed importance-sampling leave-one-out cross-validation (PSIS-LOO) for purposes of model checking and model comparison.</p>
<p>In this vignette we can’t provide all necessary background information on PSIS-LOO and its diagnostics (Pareto <span class="math inline">\(k\)</span> and effective sample size), so we encourage readers to refer to the following papers for more details:</p>
<ul>
<li><p>Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. <em>Statistics and Computing</em>. 27(5), 1413–1432. :10.1007/s11222-016-9696-4. Links: <a href="https://link.springer.com/article/10.1007/s11222-016-9696-4">published</a> | <a href="https://arxiv.org/abs/1507.04544">preprint arXiv</a>.</p></li>
<li><p>Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2024). Pareto smoothed importance sampling. <em>Journal of Machine Learning Research</em>, 25(72):1-58. <a href="https://jmlr.org/papers/v25/19-556.html">PDF</a></p></li>
</ul>
</div>
<div id="setup" class="section level1">
<h1>Setup</h1>
<p>In addition to the <strong>loo</strong> package, we’ll also be using <strong>rstanarm</strong> and <strong>bayesplot</strong>:</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(<span class="st">"rstanarm"</span>)</span>
<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(<span class="st">"bayesplot"</span>)</span>
<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(<span class="st">"loo"</span>)</span></code></pre></div>
</div>
<div id="example-poisson-vs-negative-binomial-for-the-roaches-dataset" class="section level1">
<h1>Example: Poisson vs negative binomial for the roaches dataset</h1>
<div id="background-and-model-fitting" class="section level2">
<h2>Background and model fitting</h2>
<p>The Poisson and negative binomial regression models used below in our example, as well as the <code>stan_glm</code> function used to fit the models, are covered in more depth in the <strong>rstanarm</strong> vignette <a href="http://mc-stan.org/rstanarm/articles/count.html"><em>Estimating Generalized Linear Models for Count Data with rstanarm</em></a>. In the rest of this vignette we will assume the reader is already familiar with these kinds of models.</p>
<div id="roaches-data" class="section level3">
<h3>Roaches data</h3>
<p>The example data we’ll use comes from Chapter 8.3 of Gelman and Hill (2007). We want to make inferences about the efficacy of a certain pest management system at reducing the number of roaches in urban apartments. Here is how Gelman and Hill describe the experiment and data (pg. 161):</p>
<blockquote>
<p>the treatment and control were applied to 160 and 104 apartments, respectively, and the outcome measurement <span class="math inline">\(y_i\)</span> in each apartment <span class="math inline">\(i\)</span> was the number of roaches caught in a set of traps. Different apartments had traps for different numbers of days</p>
</blockquote>
<p>In addition to an intercept, the regression predictors for the model are <code>roach1</code>, the pre-treatment number of roaches (rescaled above to be in units of hundreds), the treatment indicator <code>treatment</code>, and a variable indicating whether the apartment is in a building restricted to elderly residents <code>senior</code>. Because the number of days for which the roach traps were used is not the same for all apartments in the sample, we use the <code>offset</code> argument to specify that <code>log(exposure2)</code> should be added to the linear predictor.</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="co"># the 'roaches' data frame is included with the rstanarm package</span></span>
<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(roaches)</span>
<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(roaches)</span></code></pre></div>
<pre><code>'data.frame': 262 obs. of 5 variables:
$ y : int 153 127 7 7 0 0 73 24 2 2 ...
$ roach1 : num 308 331.25 1.67 3 2 ...
$ treatment: int 1 1 1 1 1 1 1 1 0 0 ...
$ senior : int 0 0 0 0 0 0 0 0 0 0 ...
$ exposure2: num 0.8 0.6 1 1 1.14 ...</code></pre>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="co"># rescale to units of hundreds of roaches</span></span>
<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a>roaches<span class="sc">$</span>roach1 <span class="ot"><-</span> roaches<span class="sc">$</span>roach1 <span class="sc">/</span> <span class="dv">100</span></span></code></pre></div>
</div>
<div id="fit-poisson-model" class="section level3">
<h3>Fit Poisson model</h3>
<p>We’ll fit a simple Poisson regression model using the <code>stan_glm</code> function from the <strong>rstanarm</strong> package.</p>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a>fit1 <span class="ot"><-</span></span>
<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">stan_glm</span>(</span>
<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a> <span class="at">formula =</span> y <span class="sc">~</span> roach1 <span class="sc">+</span> treatment <span class="sc">+</span> senior,</span>
<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a> <span class="at">offset =</span> <span class="fu">log</span>(exposure2),</span>
<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a> <span class="at">data =</span> roaches,</span>
<span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a> <span class="at">family =</span> <span class="fu">poisson</span>(<span class="at">link =</span> <span class="st">"log"</span>),</span>
<span id="cb5-7"><a href="#cb5-7" aria-hidden="true" tabindex="-1"></a> <span class="at">prior =</span> <span class="fu">normal</span>(<span class="dv">0</span>, <span class="fl">2.5</span>, <span class="at">autoscale =</span> <span class="cn">TRUE</span>),</span>
<span id="cb5-8"><a href="#cb5-8" aria-hidden="true" tabindex="-1"></a> <span class="at">prior_intercept =</span> <span class="fu">normal</span>(<span class="dv">0</span>, <span class="dv">5</span>, <span class="at">autoscale =</span> <span class="cn">TRUE</span>),</span>
<span id="cb5-9"><a href="#cb5-9" aria-hidden="true" tabindex="-1"></a> <span class="at">seed =</span> <span class="dv">12345</span></span>
<span id="cb5-10"><a href="#cb5-10" aria-hidden="true" tabindex="-1"></a> )</span></code></pre></div>
<p>Usually we would also run posterior predictive checks as shown in the <strong>rstanarm</strong> vignette <a href="http://mc-stan.org/rstanarm/articles/count.html">Estimating Generalized Linear Models for Count Data with rstanarm</a>, but here we focus only on methods provided by the <strong>loo</strong> package.</p>
<p><br></p>
</div>
</div>
<div id="using-the-loo-package-for-model-checking-and-comparison" class="section level2">
<h2>Using the <strong>loo</strong> package for model checking and comparison</h2>
<p><em>Although cross-validation is mostly used for model comparison, it is also useful for model checking.</em></p>
<div id="computing-psis-loo-and-checking-diagnostics" class="section level3">
<h3>Computing PSIS-LOO and checking diagnostics</h3>
<p>We start by computing PSIS-LOO with the <code>loo</code> function. Since we fit our model using <strong>rstanarm</strong> we can use the <code>loo</code> method for <code>stanreg</code> objects (fitted model objects from <strong>rstanarm</strong>), which doesn’t require us to first extract the pointwise log-likelihood values. If we had written our own Stan program instead of using <strong>rstanarm</strong> we would pass an array or matrix of log-likelihood values to the <code>loo</code> function (see, e.g. <code>help("loo.array", package = "loo")</code>). We’ll also use the argument <code>save_psis = TRUE</code> to save some intermediate results to be re-used later.</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a>loo1 <span class="ot"><-</span> <span class="fu">loo</span>(fit1, <span class="at">save_psis =</span> <span class="cn">TRUE</span>)</span></code></pre></div>
<pre><code>Replacing NAs in `r_eff` with 1s</code></pre>
<pre><code>Warning: Found 17 observations with a pareto_k > 0.7. With this many problematic observations we recommend calling 'kfold' with argument 'K=10' to perform 10-fold cross-validation rather than LOO.</code></pre>
<p><code>loo</code> gives us warnings about the Pareto diagnostics, which indicate that for some observations the leave-one-out posteriors are different enough from the full posterior that importance-sampling is not able to correct the difference. We can see more details by printing the <code>loo</code> object.</p>
<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="fu">print</span>(loo1)</span></code></pre></div>
<pre><code>
Computed from 4000 by 262 log-likelihood matrix.
Estimate SE
elpd_loo -6247.5 727.9
p_loo 292.1 73.3
looic 12495.0 1455.7
------
MCSE of elpd_loo is NA.
MCSE and ESS estimates assume MCMC draws (r_eff in [0.5, 1.2]).
Pareto k diagnostic values:
Count Pct. Min. ESS
(-Inf, 0.7] (good) 245 93.5% 84
(0.7, 1] (bad) 8 3.1% <NA>
(1, Inf) (very bad) 9 3.4% <NA>
See help('pareto-k-diagnostic') for details.</code></pre>
<p>The table shows us a summary of Pareto <span class="math inline">\(k\)</span> diagnostic, which is used to assess the reliability of the estimates. In addition to the proportion of leave-one-out folds with <span class="math inline">\(k\)</span> values in different intervals, the minimum of the effective sample sizes in that category is shown to give idea why higher <span class="math inline">\(k\)</span> values are bad. Since we have some <span class="math inline">\(k>1\)</span>, we are not able to compute an estimate for the Monte Carlo standard error (SE) of the expected log predictive density (<code>elpd_loo</code>) and <code>NA</code> is displayed. (Full details on the interpretation of the Pareto <span class="math inline">\(k\)</span> diagnostics are available in the Vehtari, Gelman, and Gabry (2017) and Vehtari, Simpson, Gelman, Yao, and Gabry (2024) papers referenced at the top of this vignette.)</p>
<p>In this case the <code>elpd_loo</code> estimate should not be considered reliable. If we had a well-specified model we would expect the estimated effective number of parameters (<code>p_loo</code>) to be smaller than or similar to the total number of parameters in the model. Here <code>p_loo</code> is almost 300, which is about 70 times the total number of parameters in the model, indicating severe model misspecification.</p>
</div>
<div id="plotting-pareto-k-diagnostics" class="section level3">
<h3>Plotting Pareto <span class="math inline">\(k\)</span> diagnostics</h3>
<p>Using the <code>plot</code> method on our <code>loo1</code> object produces a plot of the <span class="math inline">\(k\)</span> values (in the same order as the observations in the dataset used to fit the model) with horizontal lines corresponding to the same categories as in the printed output above.</p>
<div class="sourceCode" id="cb11"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(loo1)</span></code></pre></div>
<p><img src="" width="70%" style="display: block; margin: auto;" /></p>
<p>This plot is useful to quickly see the distribution of <span class="math inline">\(k\)</span> values, but it’s often also possible to see structure with respect to data ordering. In our case this is mild, but there seems to be a block of data that is somewhat easier to predict (indices around 90–150). Unfortunately even for these data points we see some high <span class="math inline">\(k\)</span> values.</p>
</div>
<div id="marginal-posterior-predictive-checks" class="section level3">
<h3>Marginal posterior predictive checks</h3>
<p>The <code>loo</code> package can be used in combination with the <code>bayesplot</code> package for leave-one-out cross-validation marginal posterior predictive checks <a href="https://arxiv.org/abs/1709.01449">Gabry et al (2018)</a>. LOO-PIT values are cumulative probabilities for <span class="math inline">\(y_i\)</span> computed using the LOO marginal predictive distributions <span class="math inline">\(p(y_i|y_{-i})\)</span>. For a good model, the distribution of LOO-PIT values should be uniform. In the following QQ-plot the LOO-PIT values for our model (y-axi) is compared to standard uniform distribution (x-axis).</p>
<div class="sourceCode" id="cb12"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a>yrep <span class="ot"><-</span> <span class="fu">posterior_predict</span>(fit1)</span>
<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb12-3"><a href="#cb12-3" aria-hidden="true" tabindex="-1"></a><span class="fu">ppc_loo_pit_qq</span>(</span>
<span id="cb12-4"><a href="#cb12-4" aria-hidden="true" tabindex="-1"></a> <span class="at">y =</span> roaches<span class="sc">$</span>y,</span>
<span id="cb12-5"><a href="#cb12-5" aria-hidden="true" tabindex="-1"></a> <span class="at">yrep =</span> yrep,</span>
<span id="cb12-6"><a href="#cb12-6" aria-hidden="true" tabindex="-1"></a> <span class="at">lw =</span> <span class="fu">weights</span>(loo1<span class="sc">$</span>psis_object)</span>
<span id="cb12-7"><a href="#cb12-7" aria-hidden="true" tabindex="-1"></a>)</span></code></pre></div>
<pre><code>Some PIT values larger than 1! Largest: 1
Rounding PIT > 1 to 1.</code></pre>
<pre><code>Warning in .loo_pit(y = y, yrep = object, lw = lw):</code></pre>
<p><img src="" width="60%" style="display: block; margin: auto;" /></p>
<p>The excessive number of LOO-PIT values close to 0 indicates that the model is under-dispersed compared to the data, and we should consider a model that allows for greater dispersion.</p>
</div>
</div>
<div id="try-alternative-model-with-more-flexibility" class="section level2">
<h2>Try alternative model with more flexibility</h2>
<p>Here we will try <a href="https://en.wikipedia.org/wiki/Negative_binomial_distribution">negative binomial</a> regression, which is commonly used for overdispersed count data.<br />
Unlike the Poisson distribution, the negative binomial distribution allows the conditional mean and variance of <span class="math inline">\(y\)</span> to differ.</p>
<div class="sourceCode" id="cb15"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a>fit2 <span class="ot"><-</span> <span class="fu">update</span>(fit1, <span class="at">family =</span> neg_binomial_2)</span></code></pre></div>
<div class="sourceCode" id="cb16"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" aria-hidden="true" tabindex="-1"></a>loo2 <span class="ot"><-</span> <span class="fu">loo</span>(fit2, <span class="at">save_psis =</span> <span class="cn">TRUE</span>, <span class="at">cores =</span> <span class="dv">2</span>)</span></code></pre></div>
<pre><code>Warning: Found 1 observation(s) with a pareto_k > 0.7. We recommend calling 'loo' again with argument 'k_threshold = 0.7' in order to calculate the ELPD without the assumption that these observations are negligible. This will refit the model 1 times to compute the ELPDs for the problematic observations directly.</code></pre>
<div class="sourceCode" id="cb18"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1" aria-hidden="true" tabindex="-1"></a><span class="fu">print</span>(loo2)</span></code></pre></div>
<pre><code>
Computed from 4000 by 262 log-likelihood matrix.
Estimate SE
elpd_loo -895.6 37.8
p_loo 6.7 2.7
looic 1791.3 75.5
------
MCSE of elpd_loo is NA.
MCSE and ESS estimates assume MCMC draws (r_eff in [0.7, 1.4]).
Pareto k diagnostic values:
Count Pct. Min. ESS
(-Inf, 0.7] (good) 261 99.6% 378
(0.7, 1] (bad) 1 0.4% <NA>
(1, Inf) (very bad) 0 0.0% <NA>
See help('pareto-k-diagnostic') for details.</code></pre>
<div class="sourceCode" id="cb20"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb20-1"><a href="#cb20-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(loo2, <span class="at">label_points =</span> <span class="cn">TRUE</span>)</span></code></pre></div>
<p><img src="" width="60%" style="display: block; margin: auto;" /></p>
<p>Using the <code>label_points</code> argument will label any <span class="math inline">\(k\)</span> values larger than the diagnostic threshold with the index of the corresponding data point. These high values are often the result of model misspecification and frequently correspond to data points that would be considered ``outliers’’ in the data and surprising according to the model <a href="https://arxiv.org/abs/1709.01449">Gabry et al (2019)</a>. Unfortunately, while large <span class="math inline">\(k\)</span> values are a useful indicator of model misspecification, small <span class="math inline">\(k\)</span> values are not a guarantee that a model is well-specified.</p>
<p>If there are a small number of problematic <span class="math inline">\(k\)</span> values then we can use a feature in <strong>rstanarm</strong> that lets us refit the model once for each of these problematic observations. Each time the model is refit, one of the observations with a high <span class="math inline">\(k\)</span> value is omitted and the LOO calculations are performed exactly for that observation. The results are then recombined with the approximate LOO calculations already carried out for the observations without problematic <span class="math inline">\(k\)</span> values:</p>
<div class="sourceCode" id="cb21"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb21-1"><a href="#cb21-1" aria-hidden="true" tabindex="-1"></a><span class="cf">if</span> (<span class="fu">any</span>(<span class="fu">pareto_k_values</span>(loo2) <span class="sc">></span> <span class="fl">0.7</span>)) {</span>
<span id="cb21-2"><a href="#cb21-2" aria-hidden="true" tabindex="-1"></a> loo2 <span class="ot"><-</span> <span class="fu">loo</span>(fit2, <span class="at">save_psis =</span> <span class="cn">TRUE</span>, <span class="at">k_threshold =</span> <span class="fl">0.7</span>)</span>
<span id="cb21-3"><a href="#cb21-3" aria-hidden="true" tabindex="-1"></a>}</span></code></pre></div>
<pre><code>1 problematic observation(s) found.
Model will be refit 1 times.</code></pre>
<pre><code>
Fitting model 1 out of 1 (leaving out observation 93)</code></pre>
<div class="sourceCode" id="cb24"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb24-1"><a href="#cb24-1" aria-hidden="true" tabindex="-1"></a><span class="fu">print</span>(loo2)</span></code></pre></div>
<pre><code>
Computed from 4000 by 262 log-likelihood matrix.
Estimate SE
elpd_loo -895.5 37.7
p_loo 6.6 2.6
looic 1791.1 75.4
------
MCSE of elpd_loo is 0.2.
MCSE and ESS estimates assume MCMC draws (r_eff in [0.7, 1.4]).
All Pareto k estimates are good (k < 0.7).
See help('pareto-k-diagnostic') for details.</code></pre>
<p>In the print output we can see that the Monte Carlo SE is small compared to the other uncertainties.</p>
<p>On the other hand, <code>p_loo</code> is about 7 and still a bit higher than the total number of parameters in the model. This indicates that there is almost certainly still some degree of model misspecification, but this is much better than the <code>p_loo</code> estimate for the Poisson model.</p>
<p>For further model checking we again examine the LOO-PIT values.</p>
<div class="sourceCode" id="cb26"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb26-1"><a href="#cb26-1" aria-hidden="true" tabindex="-1"></a>yrep <span class="ot"><-</span> <span class="fu">posterior_predict</span>(fit2)</span>
<span id="cb26-2"><a href="#cb26-2" aria-hidden="true" tabindex="-1"></a><span class="fu">ppc_loo_pit_qq</span>(roaches<span class="sc">$</span>y, yrep, <span class="at">lw =</span> <span class="fu">weights</span>(loo2<span class="sc">$</span>psis_object))</span></code></pre></div>
<p><img src="" width="60%" style="display: block; margin: auto;" /></p>
<p>The plot for the negative binomial model looks better than the Poisson plot, but we still see that this model is not capturing all of the essential features in the data.</p>
</div>
<div id="comparing-the-models-on-expected-log-predictive-density" class="section level2">
<h2>Comparing the models on expected log predictive density</h2>
<p>We can use the <code>loo_compare</code> function to compare our two models on expected log predictive density (ELPD) for new data:</p>
<div class="sourceCode" id="cb27"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb27-1"><a href="#cb27-1" aria-hidden="true" tabindex="-1"></a><span class="fu">loo_compare</span>(loo1, loo2)</span></code></pre></div>
<pre><code> elpd_diff se_diff
fit2 0.0 0.0
fit1 -5352.0 709.2</code></pre>
<p>The difference in ELPD is much larger than several times the estimated standard error of the difference again indicating that the negative-binomial model is xpected to have better predictive performance than the Poisson model. However, according to the LOO-PIT checks there is still some misspecification, and a reasonable guess is that a hurdle or zero-inflated model would be an improvement (we leave that for another case study).</p>
<p><br></p>
</div>
</div>
<div id="references" class="section level1">
<h1>References</h1>
<p>Gabry, J., Simpson, D., Vehtari, A., Betancourt, M. and Gelman, A. (2019), Visualization in Bayesian workflow. <em>J. R. Stat. Soc. A</em>, 182: 389-402. :10.1111/rssa.12378. (<a href="https://rss.onlinelibrary.wiley.com/doi/full/10.1111/rssa.12378">journal version</a>, <a href="https://arxiv.org/abs/1709.01449">arXiv preprint</a>, <a href="https://github.com/jgabry/bayes-vis-paper">code on GitHub</a>) <a id="gabry2019"></a></p>
<p>Gelman, A. and Hill, J. (2007). <em>Data Analysis Using Regression and Multilevel/Hierarchical Models.</em> Cambridge University Press, Cambridge, UK.</p>
<p>Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. <em>Statistics and Computing</em>. 27(5), 1413–1432. :10.1007/s11222-016-9696-4. <a href="https://link.springer.com/article/10.1007/s11222-016-9696-4">online</a>, <a href="https://arxiv.org/abs/1507.04544">arXiv preprint arXiv:1507.04544</a>.</p>
<p>Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2024). Pareto smoothed importance sampling. <em>Journal of Machine Learning Research</em>, 25(72):1-58. <a href="https://jmlr.org/papers/v25/19-556.html">PDF</a></p>
</div>
<!-- code folding -->
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>
|