File: loo2-lfo.html

package info (click to toggle)
r-cran-loo 2.9.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 4,836 kB
  • sloc: sh: 15; makefile: 2
file content (847 lines) | stat: -rw-r--r-- 448,376 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />

<meta name="viewport" content="width=device-width, initial-scale=1" />

<meta name="author" content="Paul Bürkner, Jonah Gabry, Aki Vehtari" />

<meta name="date" content="2025-12-22" />

<title>Approximate leave-future-out cross-validation for Bayesian time series models</title>

<script>// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
// be compatible with the behavior of Pandoc < 2.8).
document.addEventListener('DOMContentLoaded', function(e) {
  var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
  var i, h, a;
  for (i = 0; i < hs.length; i++) {
    h = hs[i];
    if (!/^h[1-6]$/i.test(h.tagName)) continue;  // it should be a header h1-h6
    a = h.attributes;
    while (a.length > 0) h.removeAttribute(a[0].name);
  }
});
</script>

<style type="text/css">
  code{white-space: pre-wrap;}
  span.smallcaps{font-variant: small-caps;}
  span.underline{text-decoration: underline;}
  div.column{display: inline-block; vertical-align: top; width: 50%;}
  div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
  ul.task-list{list-style: none;}
    </style>



<style type="text/css">
  code {
    white-space: pre;
  }
  .sourceCode {
    overflow: visible;
  }
</style>
<style type="text/css" data-origin="pandoc">
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
  { counter-reset: source-line 0; }
pre.numberSource code > span
  { position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
  { content: counter(source-line);
    position: relative; left: -1em; text-align: right; vertical-align: baseline;
    border: none; display: inline-block;
    -webkit-touch-callout: none; -webkit-user-select: none;
    -khtml-user-select: none; -moz-user-select: none;
    -ms-user-select: none; user-select: none;
    padding: 0 4px; width: 4em;
    color: #aaaaaa;
  }
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa;  padding-left: 4px; }
div.sourceCode
  {   }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #7d9029; } /* Attribute */
code span.bn { color: #40a070; } /* BaseN */
code span.bu { } /* BuiltIn */
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4070a0; } /* Char */
code span.cn { color: #880000; } /* Constant */
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
code span.dt { color: #902000; } /* DataType */
code span.dv { color: #40a070; } /* DecVal */
code span.er { color: #ff0000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #40a070; } /* Float */
code span.fu { color: #06287e; } /* Function */
code span.im { } /* Import */
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
code span.op { color: #666666; } /* Operator */
code span.ot { color: #007020; } /* Other */
code span.pp { color: #bc7a00; } /* Preprocessor */
code span.sc { color: #4070a0; } /* SpecialChar */
code span.ss { color: #bb6688; } /* SpecialString */
code span.st { color: #4070a0; } /* String */
code span.va { color: #19177c; } /* Variable */
code span.vs { color: #4070a0; } /* VerbatimString */
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */

</style>
<script>
// apply pandoc div.sourceCode style to pre.sourceCode instead
(function() {
  var sheets = document.styleSheets;
  for (var i = 0; i < sheets.length; i++) {
    if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue;
    try { var rules = sheets[i].cssRules; } catch (e) { continue; }
    var j = 0;
    while (j < rules.length) {
      var rule = rules[j];
      // check if there is a div.sourceCode rule
      if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") {
        j++;
        continue;
      }
      var style = rule.style.cssText;
      // check if color or background-color is set
      if (rule.style.color === '' && rule.style.backgroundColor === '') {
        j++;
        continue;
      }
      // replace div.sourceCode by a pre.sourceCode rule
      sheets[i].deleteRule(j);
      sheets[i].insertRule('pre.sourceCode{' + style + '}', j);
    }
  }
})();
</script>




<style type="text/css">body {
background-color: #fff;
margin: 1em auto;
max-width: 700px;
overflow: visible;
padding-left: 2em;
padding-right: 2em;
font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
font-size: 14px;
line-height: 1.35;
}
#TOC {
clear: both;
margin: 0 0 10px 10px;
padding: 4px;
width: 400px;
border: 1px solid #CCCCCC;
border-radius: 5px;
background-color: #f6f6f6;
font-size: 13px;
line-height: 1.3;
}
#TOC .toctitle {
font-weight: bold;
font-size: 15px;
margin-left: 5px;
}
#TOC ul {
padding-left: 40px;
margin-left: -1.5em;
margin-top: 5px;
margin-bottom: 5px;
}
#TOC ul ul {
margin-left: -2em;
}
#TOC li {
line-height: 16px;
}
table {
margin: 1em auto;
border-width: 1px;
border-color: #DDDDDD;
border-style: outset;
border-collapse: collapse;
}
table th {
border-width: 2px;
padding: 5px;
border-style: inset;
}
table td {
border-width: 1px;
border-style: inset;
line-height: 18px;
padding: 5px 5px;
}
table, table th, table td {
border-left-style: none;
border-right-style: none;
}
table thead, table tr.even {
background-color: #f7f7f7;
}
p {
margin: 0.5em 0;
}
blockquote {
background-color: #f6f6f6;
padding: 0.25em 0.75em;
}
hr {
border-style: solid;
border: none;
border-top: 1px solid #777;
margin: 28px 0;
}
dl {
margin-left: 0;
}
dl dd {
margin-bottom: 13px;
margin-left: 13px;
}
dl dt {
font-weight: bold;
}
ul {
margin-top: 0;
}
ul li {
list-style: circle outside;
}
ul ul {
margin-bottom: 0;
}
pre, code {
background-color: #f7f7f7;
border-radius: 3px;
color: #333;
white-space: pre-wrap; 
}
pre {
border-radius: 3px;
margin: 5px 0px 10px 0px;
padding: 10px;
}
pre:not([class]) {
background-color: #f7f7f7;
}
code {
font-family: Consolas, Monaco, 'Courier New', monospace;
font-size: 85%;
}
p > code, li > code {
padding: 2px 0px;
}
div.figure {
text-align: center;
}
img {
background-color: #FFFFFF;
padding: 2px;
border: 1px solid #DDDDDD;
border-radius: 3px;
border: 1px solid #CCCCCC;
margin: 0 5px;
}
h1 {
margin-top: 0;
font-size: 35px;
line-height: 40px;
}
h2 {
border-bottom: 4px solid #f7f7f7;
padding-top: 10px;
padding-bottom: 2px;
font-size: 145%;
}
h3 {
border-bottom: 2px solid #f7f7f7;
padding-top: 10px;
font-size: 120%;
}
h4 {
border-bottom: 1px solid #f7f7f7;
margin-left: 8px;
font-size: 105%;
}
h5, h6 {
border-bottom: 1px solid #ccc;
font-size: 105%;
}
a {
color: #0033dd;
text-decoration: none;
}
a:hover {
color: #6666ff; }
a:visited {
color: #800080; }
a:visited:hover {
color: #BB00BB; }
a[href^="http:"] {
text-decoration: underline; }
a[href^="https:"] {
text-decoration: underline; }

code > span.kw { color: #555; font-weight: bold; } 
code > span.dt { color: #902000; } 
code > span.dv { color: #40a070; } 
code > span.bn { color: #d14; } 
code > span.fl { color: #d14; } 
code > span.ch { color: #d14; } 
code > span.st { color: #d14; } 
code > span.co { color: #888888; font-style: italic; } 
code > span.ot { color: #007020; } 
code > span.al { color: #ff0000; font-weight: bold; } 
code > span.fu { color: #900; font-weight: bold; } 
code > span.er { color: #a61717; background-color: #e3d2d2; } 
</style>




</head>

<body>




<h1 class="title toc-ignore">Approximate leave-future-out cross-validation for Bayesian time series models</h1>
<h4 class="author">Paul Bürkner, Jonah Gabry, Aki Vehtari</h4>
<h4 class="date">2025-12-22</h4>


<div id="TOC">
<ul>
<li><a href="#introduction">Introduction</a></li>
<li><a href="#m-step-ahead-predictions"><span class="math inline">\(M\)</span>-step-ahead predictions</a></li>
<li><a href="#approximate_MSAP">Approximate <span class="math inline">\(M\)</span>-SAP using importance-sampling</a></li>
<li><a href="#autoregressive-models">Autoregressive models</a></li>
<li><a href="#case-study-annual-measurements-of-the-level-of-lake-huron">Case Study: Annual measurements of the level of Lake Huron</a></li>
<li><a href="#step-ahead-predictions-leaving-out-all-future-values">1-step-ahead predictions leaving out all future values</a>
<ul>
<li><a href="#exact-1-step-ahead-predictions">Exact 1-step-ahead predictions</a></li>
<li><a href="#approximate-1-step-ahead-predictions">Approximate 1-step-ahead predictions</a></li>
</ul></li>
<li><a href="#m-step-ahead-predictions-leaving-out-all-future-values"><span class="math inline">\(M\)</span>-step-ahead predictions leaving out all future values</a>
<ul>
<li><a href="#exact-m-step-ahead-predictions">Exact <span class="math inline">\(M\)</span>-step-ahead predictions</a></li>
<li><a href="#approximate-m-step-ahead-predictions">Approximate <span class="math inline">\(M\)</span>-step-ahead predictions</a></li>
</ul></li>
<li><a href="#conclusion">Conclusion</a></li>
<li><a href="#references">References</a></li>
<li><a href="#appendix">Appendix</a>
<ul>
<li><a href="#appendix-session-information">Appendix: Session information</a></li>
<li><a href="#appendix-licenses">Appendix: Licenses</a></li>
</ul></li>
</ul>
</div>

<!--
%\VignetteEngine{knitr::rmarkdown}
%\VignetteIndexEntry{Approximate leave-future-out cross-validation for Bayesian time series models}
-->
<div id="introduction" class="section level2">
<h2>Introduction</h2>
<p>One of the most common goals of a time series analysis is to use the observed series to inform predictions for future observations. We will refer to this task of predicting a sequence of <span class="math inline">\(M\)</span> future observations as <span class="math inline">\(M\)</span>-step-ahead prediction (<span class="math inline">\(M\)</span>-SAP). Fortunately, once we have fit a model and can sample from the posterior predictive distribution, it is straightforward to generate predictions as far into the future as we want. It is also straightforward to evaluate the <span class="math inline">\(M\)</span>-SAP performance of a time series model by comparing the predictions to the observed sequence of <span class="math inline">\(M\)</span> future data points once they become available.</p>
<p>Unfortunately, we are often in the position of having to use a model to inform decisions <em>before</em> we can collect the future observations required for assessing the predictive performance. If we have many competing models we may also need to first decide which of the models (or which combination of the models) we should rely on for predictions. In these situations the best we can do is to use methods for approximating the expected predictive performance of our models using only the observations of the time series we already have.</p>
<p>If there were no time dependence in the data or if the focus is to assess the non-time-dependent part of the model, we could use methods like leave-one-out cross-validation (LOO-CV). For a data set with <span class="math inline">\(N\)</span> observations, we refit the model <span class="math inline">\(N\)</span> times, each time leaving out one of the <span class="math inline">\(N\)</span> observations and assessing how well the model predicts the left-out observation. LOO-CV is very expensive computationally in most realistic settings, but the Pareto smoothed importance sampling (PSIS, Vehtari et al, 2017, 2024) algorithm provided by the <em>loo</em> package allows for approximating exact LOO-CV with PSIS-LOO-CV. PSIS-LOO-CV requires only a single fit of the full model and comes with diagnostics for assessing the validity of the approximation.</p>
<p>With a time series we can do something similar to LOO-CV but, except in a few cases, it does not make sense to leave out observations one at a time because then we are allowing information from the future to influence predictions of the past (i.e., times <span class="math inline">\(t + 1, t+2, \ldots\)</span> should not be used to predict for time <span class="math inline">\(t\)</span>). To apply the idea of cross-validation to the <span class="math inline">\(M\)</span>-SAP case, instead of leave-<em>one</em>-out cross-validation we need some form of leave-<em>future</em>-out cross-validation (LFO-CV). As we will demonstrate in this case study, LFO-CV does not refer to one particular prediction task but rather to various possible cross-validation approaches that all involve some form of prediction for new time series data. Like exact LOO-CV, exact LFO-CV requires refitting the model many times to different subsets of the data, which is computationally very costly for most nontrivial examples, in particular for Bayesian analyses where refitting the model means estimating a new posterior distribution rather than a point estimate.</p>
<p>Although PSIS-LOO-CV provides an efficient approximation to exact LOO-CV, until now there has not been an analogous approximation to exact LFO-CV that drastically reduces the computational burden while also providing informative diagnostics about the quality of the approximation. In this case study we present PSIS-LFO-CV, an algorithm that typically only requires refitting the time-series model a small number times and will make LFO-CV tractable for many more realistic applications than previously possible.</p>
<p>More details can be found in our paper about approximate LFO-CV (Bürkner, Gabry, &amp; Vehtari, 2020), which is available as a preprint on arXiv (<a href="https://arxiv.org/abs/1902.06281" class="uri">https://arxiv.org/abs/1902.06281</a>).</p>
</div>
<div id="m-step-ahead-predictions" class="section level2">
<h2><span class="math inline">\(M\)</span>-step-ahead predictions</h2>
<p>Assume we have a time series of observations <span class="math inline">\(y = (y_1, y_2, \ldots, y_N)\)</span> and let <span class="math inline">\(L\)</span> be the <em>minimum</em> number of observations from the series that we will require before making predictions for future data. Depending on the application and how informative the data is, it may not be possible to make reasonable predictions for <span class="math inline">\(y_{i+1}\)</span> based on <span class="math inline">\((y_1, \dots, y_{i})\)</span> until <span class="math inline">\(i\)</span> is large enough so that we can learn enough about the time series to predict future observations. Setting <span class="math inline">\(L=10\)</span>, for example, means that we will only assess predictive performance starting with observation <span class="math inline">\(y_{11}\)</span>, so that we always have at least 10 previous observations to condition on.</p>
<p>In order to assess <span class="math inline">\(M\)</span>-SAP performance we would like to compute the predictive densities</p>
<p><span class="math display">\[
p(y_{i+1:M} \,|\, y_{1:i}) = 
  p(y_{i+1}, \ldots, y_{i + M} \,|\, y_{1},...,y_{i}) 
\]</span></p>
<p>for each <span class="math inline">\(i \in \{L, \ldots, N - M\}\)</span>. The quantities <span class="math inline">\(p(y_{i+1:M} \,|\, y_{1:i})\)</span> can be computed with the help of the posterior distribution <span class="math inline">\(p(\theta \,|\, y_{1:i})\)</span> of the parameters <span class="math inline">\(\theta\)</span> conditional on only the first <span class="math inline">\(i\)</span> observations of the time-series:</p>
<p><span class="math display">\[
p(y_{i+1:M} \,| \, y_{1:i}) = 
  \int p(y_{i+1:M} \,| \, y_{1:i}, \theta) \, p(\theta\,|\,y_{1:i}) \,d\theta. 
\]</span></p>
<p>Having obtained <span class="math inline">\(S\)</span> draws <span class="math inline">\((\theta_{1:i}^{(1)}, \ldots, \theta_{1:i}^{(S)})\)</span> from the posterior distribution <span class="math inline">\(p(\theta\,|\,y_{1:i})\)</span>, we can estimate <span class="math inline">\(p(y_{i+1:M} | y_{1:i})\)</span> as</p>
<p><span class="math display">\[
p(y_{i+1:M} \,|\, y_{1:i}) \approx \frac{1}{S}\sum_{s=1}^S p(y_{i+1:M} \,|\, y_{1:i}, \theta_{1:i}^{(s)}).
\]</span></p>
</div>
<div id="approximate_MSAP" class="section level2">
<h2>Approximate <span class="math inline">\(M\)</span>-SAP using importance-sampling</h2>
<p>Unfortunately, the math above makes use of the posterior distributions from many different fits of the model to different subsets of the data. That is, to obtain the predictive density <span class="math inline">\(p(y_{i+1:M} \,|\, y_{1:i})\)</span> requires fitting a model to only the first <span class="math inline">\(i\)</span> data points, and we will need to do this for every value of <span class="math inline">\(i\)</span> under consideration (all <span class="math inline">\(i \in \{L, \ldots, N - M\}\)</span>).</p>
<p>To reduce the number of models that need to be fit for the purpose of obtaining each of the densities <span class="math inline">\(p(y_{i+1:M} \,|\, y_{1:i})\)</span>, we propose the following algorithm. First, we refit the model using the first <span class="math inline">\(L\)</span> observations of the time series and then perform a single exact <span class="math inline">\(M\)</span>-step-ahead prediction step for <span class="math inline">\(p(y_{L+1:M} \,|\, y_{1:L})\)</span>. Recall that <span class="math inline">\(L\)</span> is the minimum number of observations we have deemed acceptable for making predictions (setting <span class="math inline">\(L=0\)</span> means the first data point will be predicted only based on the prior). We define <span class="math inline">\(i^\star = L\)</span> as the current point of refit. Next, starting with <span class="math inline">\(i = i^\star + 1\)</span>, we approximate each <span class="math inline">\(p(y_{i+1:M} \,|\, y_{1:i})\)</span> via</p>
<p><span class="math display">\[
 p(y_{i+1:M} \,|\, y_{1:i}) \approx
   \frac{ \sum_{s=1}^S w_i^{(s)}\, p(y_{i+1:M} \,|\, y_{1:i}, \theta^{(s)})}
        { \sum_{s=1}^S w_i^{(s)}},
\]</span></p>
<p>where <span class="math inline">\(\theta^{(s)} = \theta^{(s)}_{1:i^\star}\)</span> are draws from the posterior distribution based on the first <span class="math inline">\(i^\star\)</span> observations and <span class="math inline">\(w_i^{(s)}\)</span> are the PSIS weights obtained in two steps. First, we compute the raw importance ratios</p>
<p><span class="math display">\[
r_i^{(s)} =
\frac{f_{1:i}(\theta^{(s)})}{f_{1:i^\star}(\theta^{(s)})} 
\propto \prod_{j \in (i^\star + 1):i} p(y_j \,|\, y_{1:(j-1)}, \theta^{(s)}),
\]</span></p>
<p>and then stabilize them using PSIS. The function <span class="math inline">\(f_{1:i}\)</span> denotes the posterior distribution based on the first <span class="math inline">\(i\)</span> observations, that is, <span class="math inline">\(f_{1:i} = p(\theta \,|\, y_{1:i})\)</span>, with <span class="math inline">\(f_{1:i^\star}\)</span> defined analogously. The index set <span class="math inline">\((i^\star + 1):i\)</span> indicates all observations which are part of the data for the model <span class="math inline">\(f_{1:i}\)</span> whose predictive performance we are trying to approximate but not for the actually fitted model <span class="math inline">\(f_{1:i^\star}\)</span>. The proportional statement arises from the fact that we ignore the normalizing constants <span class="math inline">\(p(y_{1:i})\)</span> and <span class="math inline">\(p(y_{1:i^\star})\)</span> of the compared posteriors, which leads to a self-normalized variant of PSIS (see Vehtari et al, 2017).</p>
<p>Continuing with the next observation, we gradually increase <span class="math inline">\(i\)</span> by <span class="math inline">\(1\)</span> (we move forward in time) and repeat the process. At some observation <span class="math inline">\(i\)</span>, the variability of the importance ratios <span class="math inline">\(r_i^{(s)}\)</span> will become too large and importance sampling will fail. We will refer to this particular value of <span class="math inline">\(i\)</span> as <span class="math inline">\(i^\star_1\)</span>. To identify the value of <span class="math inline">\(i^\star_1\)</span>, we check for which value of <span class="math inline">\(i\)</span> does the estimated shape parameter <span class="math inline">\(k\)</span> of the generalized Pareto distribution first cross a certain threshold <span class="math inline">\(\tau\)</span> (Vehtari et al, 2024). Only then do we refit the model using the observations up to <span class="math inline">\(i^\star_1\)</span> and restart the process from there by setting <span class="math inline">\(\theta^{(s)} = \theta^{(s)}_{1:i^\star_1}\)</span> and <span class="math inline">\(i^\star = i^\star_1\)</span> until the next refit.</p>
<p>In some cases we may only need to refit once and in other cases we will find a value <span class="math inline">\(i^\star_2\)</span> that requires a second refitting, maybe an <span class="math inline">\(i^\star_3\)</span> that requires a third refitting, and so on. We refit as many times as is required (only when <span class="math inline">\(k &gt; \tau\)</span>) until we arrive at observation <span class="math inline">\(i = N - M\)</span>. For LOO, assuming posterior sample size is 4000 or larger, we recommend to use a threshold of <span class="math inline">\(\tau = 0.7\)</span> (Vehtari et al, 2017, 2024) and it turns out this is a reasonable threshold for LFO as well (Bürkner et al. 2020).</p>
</div>
<div id="autoregressive-models" class="section level2">
<h2>Autoregressive models</h2>
<p>Autoregressive (AR) models are some of the most commonly used time-series models. An AR(p) model —an autoregressive model of order <span class="math inline">\(p\)</span>— can be defined as</p>
<p><span class="math display">\[
y_i = \eta_i + \sum_{k = 1}^p \varphi_k y_{i - k} + \varepsilon_i,
\]</span></p>
<p>where <span class="math inline">\(\eta_i\)</span> is the linear predictor for the <span class="math inline">\(i\)</span>th observation, <span class="math inline">\(\phi_k\)</span> are the autoregressive parameters and <span class="math inline">\(\varepsilon_i\)</span> are pairwise independent errors, which are usually assumed to be normally distributed with equal variance <span class="math inline">\(\sigma^2\)</span>. The model implies a recursive formula that allows for computing the right-hand side of the above equation for observation <span class="math inline">\(i\)</span> based on the values of the equations for previous observations.</p>
</div>
<div id="case-study-annual-measurements-of-the-level-of-lake-huron" class="section level2">
<h2>Case Study: Annual measurements of the level of Lake Huron</h2>
<p>To illustrate the application of PSIS-LFO-CV for estimating expected <span class="math inline">\(M\)</span>-SAP performance, we will fit a model for 98 annual measurements of the water level (in feet) of <a href="https://en.wikipedia.org/wiki/Lake_Huron">Lake Huron</a> from the years 1875–1972. This data set is found in the <strong>datasets</strong> R package, which is installed automatically with <strong>R</strong>.</p>
<p>In addition to the <strong>loo</strong> package, for this analysis we will use the <strong>brms</strong> interface to Stan to generate a Stan program and fit the model, and also the <strong>bayesplot</strong> and <strong>ggplot2</strong> packages for plotting.</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(<span class="st">&quot;brms&quot;</span>)</span>
<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(<span class="st">&quot;loo&quot;</span>)</span>
<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(<span class="st">&quot;bayesplot&quot;</span>)</span>
<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(<span class="st">&quot;ggplot2&quot;</span>)</span>
<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a><span class="fu">color_scheme_set</span>(<span class="st">&quot;brightblue&quot;</span>)</span>
<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a><span class="fu">theme_set</span>(<span class="fu">theme_default</span>())</span>
<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a>CHAINS <span class="ot">&lt;-</span> <span class="dv">4</span></span>
<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a>SEED <span class="ot">&lt;-</span> <span class="dv">5838296</span></span>
<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(SEED)</span></code></pre></div>
<p>Before fitting a model, we will first put the data into a data frame and then look at the time series.</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a>N <span class="ot">&lt;-</span> <span class="fu">length</span>(LakeHuron)</span>
<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a>df <span class="ot">&lt;-</span> <span class="fu">data.frame</span>(</span>
<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a>  <span class="at">y =</span> <span class="fu">as.numeric</span>(LakeHuron),</span>
<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a>  <span class="at">year =</span> <span class="fu">as.numeric</span>(<span class="fu">time</span>(LakeHuron)),</span>
<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a>  <span class="at">time =</span> <span class="dv">1</span><span class="sc">:</span>N</span>
<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a>)</span>
<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(df, <span class="fu">aes</span>(<span class="at">x =</span> year, <span class="at">y =</span> y)) <span class="sc">+</span> </span>
<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_point</span>(<span class="at">size =</span> <span class="dv">1</span>) <span class="sc">+</span></span>
<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a>  <span class="fu">labs</span>(</span>
<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a>    <span class="at">y =</span> <span class="st">&quot;Water Level (ft)&quot;</span>, </span>
<span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a>    <span class="at">x =</span> <span class="st">&quot;Year&quot;</span>,</span>
<span id="cb2-13"><a href="#cb2-13" aria-hidden="true" tabindex="-1"></a>    <span class="at">title =</span> <span class="st">&quot;Water Level in Lake Huron (1875-1972)&quot;</span></span>
<span id="cb2-14"><a href="#cb2-14" aria-hidden="true" tabindex="-1"></a>  ) </span></code></pre></div>
<p><img src="" width="60%" style="display: block; margin: auto;" /></p>
<p>The above plot shows rather strong autocorrelation of the time-series as well as some trend towards lower levels for later points in time.</p>
<p>We can specify an AR(4) model for these data using the <strong>brms</strong> package as follows:</p>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a>fit <span class="ot">&lt;-</span> <span class="fu">brm</span>(</span>
<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a>  y <span class="sc">~</span> <span class="fu">ar</span>(time, <span class="at">p =</span> <span class="dv">4</span>), </span>
<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a>  <span class="at">data =</span> df, </span>
<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a>  <span class="at">prior =</span> <span class="fu">prior</span>(<span class="fu">normal</span>(<span class="dv">0</span>, <span class="fl">0.5</span>), <span class="at">class =</span> <span class="st">&quot;ar&quot;</span>),</span>
<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a>  <span class="at">control =</span> <span class="fu">list</span>(<span class="at">adapt_delta =</span> <span class="fl">0.99</span>), </span>
<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a>  <span class="at">seed =</span> SEED, </span>
<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a>  <span class="at">chains =</span> CHAINS</span>
<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a>)</span></code></pre></div>
<p>The model implied predictions along with the observed values can be plotted, which reveals a rather good fit to the data.</p>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a>preds <span class="ot">&lt;-</span> <span class="fu">posterior_predict</span>(fit)</span>
<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a>preds <span class="ot">&lt;-</span> <span class="fu">cbind</span>(</span>
<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a>  <span class="at">Estimate =</span> <span class="fu">colMeans</span>(preds), </span>
<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a>  <span class="at">Q5 =</span> <span class="fu">apply</span>(preds, <span class="dv">2</span>, quantile, <span class="at">probs =</span> <span class="fl">0.05</span>),</span>
<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a>  <span class="at">Q95 =</span> <span class="fu">apply</span>(preds, <span class="dv">2</span>, quantile, <span class="at">probs =</span> <span class="fl">0.95</span>)</span>
<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a>)</span>
<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(<span class="fu">cbind</span>(df, preds), <span class="fu">aes</span>(<span class="at">x =</span> year, <span class="at">y =</span> Estimate)) <span class="sc">+</span></span>
<span id="cb4-9"><a href="#cb4-9" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_smooth</span>(<span class="fu">aes</span>(<span class="at">ymin =</span> Q5, <span class="at">ymax =</span> Q95), <span class="at">stat =</span> <span class="st">&quot;identity&quot;</span>, <span class="at">linewidth =</span> <span class="fl">0.5</span>) <span class="sc">+</span></span>
<span id="cb4-10"><a href="#cb4-10" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_point</span>(<span class="fu">aes</span>(<span class="at">y =</span> y)) <span class="sc">+</span> </span>
<span id="cb4-11"><a href="#cb4-11" aria-hidden="true" tabindex="-1"></a>  <span class="fu">labs</span>(</span>
<span id="cb4-12"><a href="#cb4-12" aria-hidden="true" tabindex="-1"></a>    <span class="at">y =</span> <span class="st">&quot;Water Level (ft)&quot;</span>, </span>
<span id="cb4-13"><a href="#cb4-13" aria-hidden="true" tabindex="-1"></a>    <span class="at">x =</span> <span class="st">&quot;Year&quot;</span>,</span>
<span id="cb4-14"><a href="#cb4-14" aria-hidden="true" tabindex="-1"></a>    <span class="at">title =</span> <span class="st">&quot;Water Level in Lake Huron (1875-1972)&quot;</span>,</span>
<span id="cb4-15"><a href="#cb4-15" aria-hidden="true" tabindex="-1"></a>    <span class="at">subtitle =</span> <span class="st">&quot;Mean (blue) and 90% predictive intervals (gray) vs. observed data (black)&quot;</span></span>
<span id="cb4-16"><a href="#cb4-16" aria-hidden="true" tabindex="-1"></a>  ) </span></code></pre></div>
<p><img src="" width="60%" style="display: block; margin: auto;" /></p>
<p>To allow for reasonable predictions of future values, we will require at least <span class="math inline">\(L = 20\)</span> historical observations (20 years) to make predictions.</p>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a>L <span class="ot">&lt;-</span> <span class="dv">20</span></span></code></pre></div>
<p>We first perform approximate leave-one-out cross-validation (LOO-CV) for the purpose of later comparison with exact and approximate LFO-CV for the 1-SAP case.</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a>loo_cv <span class="ot">&lt;-</span> <span class="fu">loo</span>(<span class="fu">log_lik</span>(fit)[, (L <span class="sc">+</span> <span class="dv">1</span>)<span class="sc">:</span>N])</span>
<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a><span class="fu">print</span>(loo_cv)</span></code></pre></div>
<pre><code>
Computed from 4000 by 78 log-likelihood matrix.

         Estimate   SE
elpd_loo    -88.6  6.4
p_loo         4.8  1.0
looic       177.3 12.8
------
MCSE of elpd_loo is 0.0.
MCSE and ESS estimates assume independent draws (r_eff=1).

All Pareto k estimates are good (k &lt; 0.7).
See help(&#39;pareto-k-diagnostic&#39;) for details.</code></pre>
</div>
<div id="step-ahead-predictions-leaving-out-all-future-values" class="section level2">
<h2>1-step-ahead predictions leaving out all future values</h2>
<p>The most basic version of <span class="math inline">\(M\)</span>-SAP is 1-SAP, in which we predict only one step ahead. In this case, <span class="math inline">\(y_{i+1:M}\)</span> simplifies to <span class="math inline">\(y_{i}\)</span> and the LFO-CV algorithm becomes considerably simpler than for larger values of <span class="math inline">\(M\)</span>.</p>
<div id="exact-1-step-ahead-predictions" class="section level3">
<h3>Exact 1-step-ahead predictions</h3>
<p>Before we compute approximate LFO-CV using PSIS we will first compute exact LFO-CV for the 1-SAP case so we can use it as a benchmark later. The initial step for the exact computation is to calculate the log-predictive densities by refitting the model many times:</p>
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a>loglik_exact <span class="ot">&lt;-</span> <span class="fu">matrix</span>(<span class="at">nrow =</span> <span class="fu">ndraws</span>(fit), <span class="at">ncol =</span> N)</span>
<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a><span class="cf">for</span> (i <span class="cf">in</span> L<span class="sc">:</span>(N <span class="sc">-</span> <span class="dv">1</span>)) {</span>
<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a>  past <span class="ot">&lt;-</span> <span class="dv">1</span><span class="sc">:</span>i</span>
<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a>  oos <span class="ot">&lt;-</span> i <span class="sc">+</span> <span class="dv">1</span></span>
<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a>  df_past <span class="ot">&lt;-</span> df[past, , drop <span class="ot">=</span> <span class="cn">FALSE</span>]</span>
<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a>  df_oos <span class="ot">&lt;-</span> df[<span class="fu">c</span>(past, oos), , drop <span class="ot">=</span> <span class="cn">FALSE</span>]</span>
<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a>  fit_i <span class="ot">&lt;-</span> <span class="fu">update</span>(fit, <span class="at">newdata =</span> df_past, <span class="at">recompile =</span> <span class="cn">FALSE</span>)</span>
<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a>  loglik_exact[, i <span class="sc">+</span> <span class="dv">1</span>] <span class="ot">&lt;-</span> <span class="fu">log_lik</span>(fit_i, <span class="at">newdata =</span> df_oos, <span class="at">oos =</span> oos)[, oos]</span>
<span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a>}</span></code></pre></div>
<p>Then we compute the exact expected log predictive density (ELPD):</p>
<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="co"># some helper functions we&#39;ll use throughout</span></span>
<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a><span class="co"># more stable than log(sum(exp(x))) </span></span>
<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a>log_sum_exp <span class="ot">&lt;-</span> <span class="cf">function</span>(x) {</span>
<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a>  max_x <span class="ot">&lt;-</span> <span class="fu">max</span>(x)  </span>
<span id="cb9-6"><a href="#cb9-6" aria-hidden="true" tabindex="-1"></a>  max_x <span class="sc">+</span> <span class="fu">log</span>(<span class="fu">sum</span>(<span class="fu">exp</span>(x <span class="sc">-</span> max_x)))</span>
<span id="cb9-7"><a href="#cb9-7" aria-hidden="true" tabindex="-1"></a>}</span>
<span id="cb9-8"><a href="#cb9-8" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb9-9"><a href="#cb9-9" aria-hidden="true" tabindex="-1"></a><span class="co"># more stable than log(mean(exp(x)))</span></span>
<span id="cb9-10"><a href="#cb9-10" aria-hidden="true" tabindex="-1"></a>log_mean_exp <span class="ot">&lt;-</span> <span class="cf">function</span>(x) {</span>
<span id="cb9-11"><a href="#cb9-11" aria-hidden="true" tabindex="-1"></a>  <span class="fu">log_sum_exp</span>(x) <span class="sc">-</span> <span class="fu">log</span>(<span class="fu">length</span>(x))</span>
<span id="cb9-12"><a href="#cb9-12" aria-hidden="true" tabindex="-1"></a>}</span>
<span id="cb9-13"><a href="#cb9-13" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb9-14"><a href="#cb9-14" aria-hidden="true" tabindex="-1"></a><span class="co"># compute log of raw importance ratios</span></span>
<span id="cb9-15"><a href="#cb9-15" aria-hidden="true" tabindex="-1"></a><span class="co"># sums over observations *not* over posterior samples</span></span>
<span id="cb9-16"><a href="#cb9-16" aria-hidden="true" tabindex="-1"></a>sum_log_ratios <span class="ot">&lt;-</span> <span class="cf">function</span>(loglik, <span class="at">ids =</span> <span class="cn">NULL</span>) {</span>
<span id="cb9-17"><a href="#cb9-17" aria-hidden="true" tabindex="-1"></a>  <span class="cf">if</span> (<span class="sc">!</span><span class="fu">is.null</span>(ids)) loglik <span class="ot">&lt;-</span> loglik[, ids, drop <span class="ot">=</span> <span class="cn">FALSE</span>]</span>
<span id="cb9-18"><a href="#cb9-18" aria-hidden="true" tabindex="-1"></a>  <span class="fu">rowSums</span>(loglik)</span>
<span id="cb9-19"><a href="#cb9-19" aria-hidden="true" tabindex="-1"></a>}</span>
<span id="cb9-20"><a href="#cb9-20" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb9-21"><a href="#cb9-21" aria-hidden="true" tabindex="-1"></a><span class="co"># for printing comparisons later</span></span>
<span id="cb9-22"><a href="#cb9-22" aria-hidden="true" tabindex="-1"></a>rbind_print <span class="ot">&lt;-</span> <span class="cf">function</span>(...) {</span>
<span id="cb9-23"><a href="#cb9-23" aria-hidden="true" tabindex="-1"></a>  <span class="fu">round</span>(<span class="fu">rbind</span>(...), <span class="at">digits =</span> <span class="dv">2</span>)</span>
<span id="cb9-24"><a href="#cb9-24" aria-hidden="true" tabindex="-1"></a>}</span></code></pre></div>
<div class="sourceCode" id="cb10"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a>exact_elpds_1sap <span class="ot">&lt;-</span> <span class="fu">apply</span>(loglik_exact, <span class="dv">2</span>, log_mean_exp)</span>
<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a>exact_elpd_1sap <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="at">ELPD =</span> <span class="fu">sum</span>(exact_elpds_1sap[<span class="sc">-</span>(<span class="dv">1</span><span class="sc">:</span>L)]))</span>
<span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb10-4"><a href="#cb10-4" aria-hidden="true" tabindex="-1"></a><span class="fu">rbind_print</span>(</span>
<span id="cb10-5"><a href="#cb10-5" aria-hidden="true" tabindex="-1"></a>  <span class="st">&quot;LOO&quot;</span> <span class="ot">=</span> loo_cv<span class="sc">$</span>estimates[<span class="st">&quot;elpd_loo&quot;</span>, <span class="st">&quot;Estimate&quot;</span>],</span>
<span id="cb10-6"><a href="#cb10-6" aria-hidden="true" tabindex="-1"></a>  <span class="st">&quot;LFO&quot;</span> <span class="ot">=</span> exact_elpd_1sap</span>
<span id="cb10-7"><a href="#cb10-7" aria-hidden="true" tabindex="-1"></a>)</span></code></pre></div>
<pre><code>      ELPD
LOO -88.64
LFO -92.43</code></pre>
<p>We see that the ELPD from LFO-CV for 1-step-ahead predictions is lower than the ELPD estimate from LOO-CV, which should be expected since LOO-CV is making use of more of the time series. That is, since the LFO-CV approach only uses observations from before the left-out data point but LOO-CV uses <em>all</em> data points other than the left-out observation, we should expect to see the larger ELPD from LOO-CV.</p>
</div>
<div id="approximate-1-step-ahead-predictions" class="section level3">
<h3>Approximate 1-step-ahead predictions</h3>
<p>We compute approximate 1-SAP with refit at observations where the Pareto <span class="math inline">\(k\)</span> estimate exceeds the threshold of <span class="math inline">\(0.7\)</span>.</p>
<div class="sourceCode" id="cb12"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a>k_thres <span class="ot">&lt;-</span> <span class="fl">0.7</span></span></code></pre></div>
<p>The code becomes a little bit more involved as compared to the exact LFO-CV. Note that we can compute exact 1-SAP at the refitting points, which comes with no additional computational costs since we had to refit the model anyway.</p>
<div class="sourceCode" id="cb13"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a>approx_elpds_1sap <span class="ot">&lt;-</span> <span class="fu">rep</span>(<span class="cn">NA</span>, N)</span>
<span id="cb13-2"><a href="#cb13-2" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb13-3"><a href="#cb13-3" aria-hidden="true" tabindex="-1"></a><span class="co"># initialize the process for i = L</span></span>
<span id="cb13-4"><a href="#cb13-4" aria-hidden="true" tabindex="-1"></a>past <span class="ot">&lt;-</span> <span class="dv">1</span><span class="sc">:</span>L</span>
<span id="cb13-5"><a href="#cb13-5" aria-hidden="true" tabindex="-1"></a>oos <span class="ot">&lt;-</span> L <span class="sc">+</span> <span class="dv">1</span></span>
<span id="cb13-6"><a href="#cb13-6" aria-hidden="true" tabindex="-1"></a>df_past <span class="ot">&lt;-</span> df[past, , drop <span class="ot">=</span> <span class="cn">FALSE</span>]</span>
<span id="cb13-7"><a href="#cb13-7" aria-hidden="true" tabindex="-1"></a>df_oos <span class="ot">&lt;-</span> df[<span class="fu">c</span>(past, oos), , drop <span class="ot">=</span> <span class="cn">FALSE</span>]</span>
<span id="cb13-8"><a href="#cb13-8" aria-hidden="true" tabindex="-1"></a>fit_past <span class="ot">&lt;-</span> <span class="fu">update</span>(fit, <span class="at">newdata =</span> df_past, <span class="at">recompile =</span> <span class="cn">FALSE</span>)</span>
<span id="cb13-9"><a href="#cb13-9" aria-hidden="true" tabindex="-1"></a>loglik <span class="ot">&lt;-</span> <span class="fu">log_lik</span>(fit_past, <span class="at">newdata =</span> df_oos, <span class="at">oos =</span> oos)</span>
<span id="cb13-10"><a href="#cb13-10" aria-hidden="true" tabindex="-1"></a>approx_elpds_1sap[L <span class="sc">+</span> <span class="dv">1</span>] <span class="ot">&lt;-</span> <span class="fu">log_mean_exp</span>(loglik[, oos])</span>
<span id="cb13-11"><a href="#cb13-11" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb13-12"><a href="#cb13-12" aria-hidden="true" tabindex="-1"></a><span class="co"># iterate over i &gt; L</span></span>
<span id="cb13-13"><a href="#cb13-13" aria-hidden="true" tabindex="-1"></a>i_refit <span class="ot">&lt;-</span> L</span>
<span id="cb13-14"><a href="#cb13-14" aria-hidden="true" tabindex="-1"></a>refits <span class="ot">&lt;-</span> L</span>
<span id="cb13-15"><a href="#cb13-15" aria-hidden="true" tabindex="-1"></a>ks <span class="ot">&lt;-</span> <span class="cn">NULL</span></span>
<span id="cb13-16"><a href="#cb13-16" aria-hidden="true" tabindex="-1"></a><span class="cf">for</span> (i <span class="cf">in</span> (L <span class="sc">+</span> <span class="dv">1</span>)<span class="sc">:</span>(N <span class="sc">-</span> <span class="dv">1</span>)) {</span>
<span id="cb13-17"><a href="#cb13-17" aria-hidden="true" tabindex="-1"></a>  past <span class="ot">&lt;-</span> <span class="dv">1</span><span class="sc">:</span>i</span>
<span id="cb13-18"><a href="#cb13-18" aria-hidden="true" tabindex="-1"></a>  oos <span class="ot">&lt;-</span> i <span class="sc">+</span> <span class="dv">1</span></span>
<span id="cb13-19"><a href="#cb13-19" aria-hidden="true" tabindex="-1"></a>  df_past <span class="ot">&lt;-</span> df[past, , drop <span class="ot">=</span> <span class="cn">FALSE</span>]</span>
<span id="cb13-20"><a href="#cb13-20" aria-hidden="true" tabindex="-1"></a>  df_oos <span class="ot">&lt;-</span> df[<span class="fu">c</span>(past, oos), , drop <span class="ot">=</span> <span class="cn">FALSE</span>]</span>
<span id="cb13-21"><a href="#cb13-21" aria-hidden="true" tabindex="-1"></a>  loglik <span class="ot">&lt;-</span> <span class="fu">log_lik</span>(fit_past, <span class="at">newdata =</span> df_oos, <span class="at">oos =</span> oos)</span>
<span id="cb13-22"><a href="#cb13-22" aria-hidden="true" tabindex="-1"></a>  </span>
<span id="cb13-23"><a href="#cb13-23" aria-hidden="true" tabindex="-1"></a>  logratio <span class="ot">&lt;-</span> <span class="fu">sum_log_ratios</span>(loglik, (i_refit <span class="sc">+</span> <span class="dv">1</span>)<span class="sc">:</span>i)</span>
<span id="cb13-24"><a href="#cb13-24" aria-hidden="true" tabindex="-1"></a>  psis_obj <span class="ot">&lt;-</span> <span class="fu">suppressWarnings</span>(<span class="fu">psis</span>(logratio))</span>
<span id="cb13-25"><a href="#cb13-25" aria-hidden="true" tabindex="-1"></a>  k <span class="ot">&lt;-</span> <span class="fu">pareto_k_values</span>(psis_obj)</span>
<span id="cb13-26"><a href="#cb13-26" aria-hidden="true" tabindex="-1"></a>  ks <span class="ot">&lt;-</span> <span class="fu">c</span>(ks, k)</span>
<span id="cb13-27"><a href="#cb13-27" aria-hidden="true" tabindex="-1"></a>  <span class="cf">if</span> (k <span class="sc">&gt;</span> k_thres) {</span>
<span id="cb13-28"><a href="#cb13-28" aria-hidden="true" tabindex="-1"></a>    <span class="co"># refit the model based on the first i observations</span></span>
<span id="cb13-29"><a href="#cb13-29" aria-hidden="true" tabindex="-1"></a>    i_refit <span class="ot">&lt;-</span> i</span>
<span id="cb13-30"><a href="#cb13-30" aria-hidden="true" tabindex="-1"></a>    refits <span class="ot">&lt;-</span> <span class="fu">c</span>(refits, i)</span>
<span id="cb13-31"><a href="#cb13-31" aria-hidden="true" tabindex="-1"></a>    fit_past <span class="ot">&lt;-</span> <span class="fu">update</span>(fit_past, <span class="at">newdata =</span> df_past, <span class="at">recompile =</span> <span class="cn">FALSE</span>)</span>
<span id="cb13-32"><a href="#cb13-32" aria-hidden="true" tabindex="-1"></a>    loglik <span class="ot">&lt;-</span> <span class="fu">log_lik</span>(fit_past, <span class="at">newdata =</span> df_oos, <span class="at">oos =</span> oos)</span>
<span id="cb13-33"><a href="#cb13-33" aria-hidden="true" tabindex="-1"></a>    approx_elpds_1sap[i <span class="sc">+</span> <span class="dv">1</span>] <span class="ot">&lt;-</span> <span class="fu">log_mean_exp</span>(loglik[, oos])</span>
<span id="cb13-34"><a href="#cb13-34" aria-hidden="true" tabindex="-1"></a>  } <span class="cf">else</span> {</span>
<span id="cb13-35"><a href="#cb13-35" aria-hidden="true" tabindex="-1"></a>    lw <span class="ot">&lt;-</span> <span class="fu">weights</span>(psis_obj, <span class="at">normalize =</span> <span class="cn">TRUE</span>)[, <span class="dv">1</span>]</span>
<span id="cb13-36"><a href="#cb13-36" aria-hidden="true" tabindex="-1"></a>    approx_elpds_1sap[i <span class="sc">+</span> <span class="dv">1</span>] <span class="ot">&lt;-</span> <span class="fu">log_sum_exp</span>(lw <span class="sc">+</span> loglik[, oos])</span>
<span id="cb13-37"><a href="#cb13-37" aria-hidden="true" tabindex="-1"></a>  }</span>
<span id="cb13-38"><a href="#cb13-38" aria-hidden="true" tabindex="-1"></a>} </span></code></pre></div>
<p>We see that the final Pareto-<span class="math inline">\(k\)</span>-estimates are mostly well below the threshold and that we only needed to refit the model a few times:</p>
<div class="sourceCode" id="cb14"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a>plot_ks <span class="ot">&lt;-</span> <span class="cf">function</span>(ks, ids, <span class="at">thres =</span> <span class="fl">0.6</span>) {</span>
<span id="cb14-2"><a href="#cb14-2" aria-hidden="true" tabindex="-1"></a>  dat_ks <span class="ot">&lt;-</span> <span class="fu">data.frame</span>(<span class="at">ks =</span> ks, <span class="at">ids =</span> ids)</span>
<span id="cb14-3"><a href="#cb14-3" aria-hidden="true" tabindex="-1"></a>  <span class="fu">ggplot</span>(dat_ks, <span class="fu">aes</span>(<span class="at">x =</span> ids, <span class="at">y =</span> ks)) <span class="sc">+</span> </span>
<span id="cb14-4"><a href="#cb14-4" aria-hidden="true" tabindex="-1"></a>    <span class="fu">geom_point</span>(<span class="fu">aes</span>(<span class="at">color =</span> ks <span class="sc">&gt;</span> thres), <span class="at">shape =</span> <span class="dv">3</span>, <span class="at">show.legend =</span> <span class="cn">FALSE</span>) <span class="sc">+</span> </span>
<span id="cb14-5"><a href="#cb14-5" aria-hidden="true" tabindex="-1"></a>    <span class="fu">geom_hline</span>(<span class="at">yintercept =</span> thres, <span class="at">linetype =</span> <span class="dv">2</span>, <span class="at">color =</span> <span class="st">&quot;red2&quot;</span>) <span class="sc">+</span> </span>
<span id="cb14-6"><a href="#cb14-6" aria-hidden="true" tabindex="-1"></a>    <span class="fu">scale_color_manual</span>(<span class="at">values =</span> <span class="fu">c</span>(<span class="st">&quot;cornflowerblue&quot;</span>, <span class="st">&quot;darkblue&quot;</span>)) <span class="sc">+</span> </span>
<span id="cb14-7"><a href="#cb14-7" aria-hidden="true" tabindex="-1"></a>    <span class="fu">labs</span>(<span class="at">x =</span> <span class="st">&quot;Data point&quot;</span>, <span class="at">y =</span> <span class="st">&quot;Pareto k&quot;</span>) <span class="sc">+</span> </span>
<span id="cb14-8"><a href="#cb14-8" aria-hidden="true" tabindex="-1"></a>    <span class="fu">ylim</span>(<span class="sc">-</span><span class="fl">0.5</span>, <span class="fl">1.5</span>)</span>
<span id="cb14-9"><a href="#cb14-9" aria-hidden="true" tabindex="-1"></a>}</span></code></pre></div>
<div class="sourceCode" id="cb15"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a><span class="fu">cat</span>(<span class="st">&quot;Using threshold &quot;</span>, k_thres, </span>
<span id="cb15-2"><a href="#cb15-2" aria-hidden="true" tabindex="-1"></a>    <span class="st">&quot;, model was refit &quot;</span>, <span class="fu">length</span>(refits), </span>
<span id="cb15-3"><a href="#cb15-3" aria-hidden="true" tabindex="-1"></a>    <span class="st">&quot; times, at observations&quot;</span>, refits)</span></code></pre></div>
<pre><code>Using threshold  0.7 , model was refit  2  times, at observations 20 57</code></pre>
<div class="sourceCode" id="cb17"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot_ks</span>(ks, (L <span class="sc">+</span> <span class="dv">1</span>)<span class="sc">:</span>(N <span class="sc">-</span> <span class="dv">1</span>))</span></code></pre></div>
<p><img src="" width="60%" style="display: block; margin: auto;" /></p>
<p>The approximate 1-SAP ELPD is remarkably similar to the exact 1-SAP ELPD computed above, which indicates our algorithm to compute approximate 1-SAP worked well for the present data and model.</p>
<div class="sourceCode" id="cb18"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1" aria-hidden="true" tabindex="-1"></a>approx_elpd_1sap <span class="ot">&lt;-</span> <span class="fu">sum</span>(approx_elpds_1sap, <span class="at">na.rm =</span> <span class="cn">TRUE</span>)</span>
<span id="cb18-2"><a href="#cb18-2" aria-hidden="true" tabindex="-1"></a><span class="fu">rbind_print</span>(</span>
<span id="cb18-3"><a href="#cb18-3" aria-hidden="true" tabindex="-1"></a>  <span class="st">&quot;approx LFO&quot;</span> <span class="ot">=</span> approx_elpd_1sap,</span>
<span id="cb18-4"><a href="#cb18-4" aria-hidden="true" tabindex="-1"></a>  <span class="st">&quot;exact LFO&quot;</span> <span class="ot">=</span> exact_elpd_1sap</span>
<span id="cb18-5"><a href="#cb18-5" aria-hidden="true" tabindex="-1"></a>)</span></code></pre></div>
<pre><code>             ELPD
approx LFO -92.98
exact LFO  -92.43</code></pre>
<p>Plotting exact against approximate predictions, we see that no approximation value deviates far from its exact counterpart, providing further evidence for the good quality of our approximation.</p>
<div class="sourceCode" id="cb20"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb20-1"><a href="#cb20-1" aria-hidden="true" tabindex="-1"></a>dat_elpd <span class="ot">&lt;-</span> <span class="fu">data.frame</span>(</span>
<span id="cb20-2"><a href="#cb20-2" aria-hidden="true" tabindex="-1"></a>  <span class="at">approx_elpd =</span> approx_elpds_1sap,</span>
<span id="cb20-3"><a href="#cb20-3" aria-hidden="true" tabindex="-1"></a>  <span class="at">exact_elpd =</span> exact_elpds_1sap</span>
<span id="cb20-4"><a href="#cb20-4" aria-hidden="true" tabindex="-1"></a>)</span>
<span id="cb20-5"><a href="#cb20-5" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb20-6"><a href="#cb20-6" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(dat_elpd, <span class="fu">aes</span>(<span class="at">x =</span> approx_elpd, <span class="at">y =</span> exact_elpd)) <span class="sc">+</span></span>
<span id="cb20-7"><a href="#cb20-7" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_abline</span>(<span class="at">color =</span> <span class="st">&quot;gray30&quot;</span>) <span class="sc">+</span></span>
<span id="cb20-8"><a href="#cb20-8" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_point</span>(<span class="at">size =</span> <span class="dv">2</span>) <span class="sc">+</span></span>
<span id="cb20-9"><a href="#cb20-9" aria-hidden="true" tabindex="-1"></a>  <span class="fu">labs</span>(<span class="at">x =</span> <span class="st">&quot;Approximate ELPDs&quot;</span>, <span class="at">y =</span> <span class="st">&quot;Exact ELPDs&quot;</span>)</span></code></pre></div>
<p><img src="" width="60%" style="display: block; margin: auto;" /></p>
<p>We can also look at the maximum difference and average difference between the approximate and exact ELPD calculations, which also indicate a ver close approximation:</p>
<div class="sourceCode" id="cb21"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb21-1"><a href="#cb21-1" aria-hidden="true" tabindex="-1"></a>max_diff <span class="ot">&lt;-</span> <span class="fu">with</span>(dat_elpd, <span class="fu">max</span>(<span class="fu">abs</span>(approx_elpd <span class="sc">-</span> exact_elpd), <span class="at">na.rm =</span> <span class="cn">TRUE</span>))</span>
<span id="cb21-2"><a href="#cb21-2" aria-hidden="true" tabindex="-1"></a>mean_diff <span class="ot">&lt;-</span> <span class="fu">with</span>(dat_elpd, <span class="fu">mean</span>(<span class="fu">abs</span>(approx_elpd <span class="sc">-</span> exact_elpd), <span class="at">na.rm =</span> <span class="cn">TRUE</span>))</span>
<span id="cb21-3"><a href="#cb21-3" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb21-4"><a href="#cb21-4" aria-hidden="true" tabindex="-1"></a><span class="fu">rbind_print</span>(</span>
<span id="cb21-5"><a href="#cb21-5" aria-hidden="true" tabindex="-1"></a>  <span class="st">&quot;Max diff&quot;</span> <span class="ot">=</span> <span class="fu">round</span>(max_diff, <span class="dv">2</span>), </span>
<span id="cb21-6"><a href="#cb21-6" aria-hidden="true" tabindex="-1"></a>  <span class="st">&quot;Mean diff&quot;</span> <span class="ot">=</span>  <span class="fu">round</span>(mean_diff, <span class="dv">3</span>)</span>
<span id="cb21-7"><a href="#cb21-7" aria-hidden="true" tabindex="-1"></a>)</span></code></pre></div>
<pre><code>          [,1]
Max diff  0.42
Mean diff 0.02</code></pre>
</div>
</div>
<div id="m-step-ahead-predictions-leaving-out-all-future-values" class="section level2">
<h2><span class="math inline">\(M\)</span>-step-ahead predictions leaving out all future values</h2>
<p>To illustrate the application of <span class="math inline">\(M\)</span>-SAP for <span class="math inline">\(M &gt; 1\)</span>, we next compute exact and approximate LFO-CV for the 4-SAP case.</p>
<div id="exact-m-step-ahead-predictions" class="section level3">
<h3>Exact <span class="math inline">\(M\)</span>-step-ahead predictions</h3>
<p>The necessary steps are the same as for 1-SAP with the exception that the log-density values of interest are now the sums of the log predictive densities of four consecutive observations. Further, the stability of the PSIS approximation actually stays the same for all <span class="math inline">\(M\)</span> as it only depends on the number of observations we leave out, not on the number of observations we predict.</p>
<div class="sourceCode" id="cb23"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb23-1"><a href="#cb23-1" aria-hidden="true" tabindex="-1"></a>M <span class="ot">&lt;-</span> <span class="dv">4</span></span>
<span id="cb23-2"><a href="#cb23-2" aria-hidden="true" tabindex="-1"></a>loglikm <span class="ot">&lt;-</span> <span class="fu">matrix</span>(<span class="at">nrow =</span> <span class="fu">ndraws</span>(fit), <span class="at">ncol =</span> N)</span>
<span id="cb23-3"><a href="#cb23-3" aria-hidden="true" tabindex="-1"></a><span class="cf">for</span> (i <span class="cf">in</span> L<span class="sc">:</span>(N <span class="sc">-</span> M)) {</span>
<span id="cb23-4"><a href="#cb23-4" aria-hidden="true" tabindex="-1"></a>  past <span class="ot">&lt;-</span> <span class="dv">1</span><span class="sc">:</span>i</span>
<span id="cb23-5"><a href="#cb23-5" aria-hidden="true" tabindex="-1"></a>  oos <span class="ot">&lt;-</span> (i <span class="sc">+</span> <span class="dv">1</span>)<span class="sc">:</span>(i <span class="sc">+</span> M)</span>
<span id="cb23-6"><a href="#cb23-6" aria-hidden="true" tabindex="-1"></a>  df_past <span class="ot">&lt;-</span> df[past, , drop <span class="ot">=</span> <span class="cn">FALSE</span>]</span>
<span id="cb23-7"><a href="#cb23-7" aria-hidden="true" tabindex="-1"></a>  df_oos <span class="ot">&lt;-</span> df[<span class="fu">c</span>(past, oos), , drop <span class="ot">=</span> <span class="cn">FALSE</span>]</span>
<span id="cb23-8"><a href="#cb23-8" aria-hidden="true" tabindex="-1"></a>  fit_past <span class="ot">&lt;-</span> <span class="fu">update</span>(fit, <span class="at">newdata =</span> df_past, <span class="at">recompile =</span> <span class="cn">FALSE</span>)</span>
<span id="cb23-9"><a href="#cb23-9" aria-hidden="true" tabindex="-1"></a>  loglik <span class="ot">&lt;-</span> <span class="fu">log_lik</span>(fit_past, <span class="at">newdata =</span> df_oos, <span class="at">oos =</span> oos)</span>
<span id="cb23-10"><a href="#cb23-10" aria-hidden="true" tabindex="-1"></a>  loglikm[, i <span class="sc">+</span> <span class="dv">1</span>] <span class="ot">&lt;-</span> <span class="fu">rowSums</span>(loglik[, oos])</span>
<span id="cb23-11"><a href="#cb23-11" aria-hidden="true" tabindex="-1"></a>}</span></code></pre></div>
<div class="sourceCode" id="cb24"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb24-1"><a href="#cb24-1" aria-hidden="true" tabindex="-1"></a>exact_elpds_4sap <span class="ot">&lt;-</span> <span class="fu">apply</span>(loglikm, <span class="dv">2</span>, log_mean_exp)</span>
<span id="cb24-2"><a href="#cb24-2" aria-hidden="true" tabindex="-1"></a>(exact_elpd_4sap <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="at">ELPD =</span> <span class="fu">sum</span>(exact_elpds_4sap, <span class="at">na.rm =</span> <span class="cn">TRUE</span>)))</span></code></pre></div>
<pre><code>     ELPD 
-404.8864 </code></pre>
</div>
<div id="approximate-m-step-ahead-predictions" class="section level3">
<h3>Approximate <span class="math inline">\(M\)</span>-step-ahead predictions</h3>
<p>Computing the approximate PSIS-LFO-CV for the 4-SAP case is a little bit more involved than the approximate version for the 1-SAP case, although the underlying principles remain the same.</p>
<div class="sourceCode" id="cb26"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb26-1"><a href="#cb26-1" aria-hidden="true" tabindex="-1"></a>approx_elpds_4sap <span class="ot">&lt;-</span> <span class="fu">rep</span>(<span class="cn">NA</span>, N)</span>
<span id="cb26-2"><a href="#cb26-2" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb26-3"><a href="#cb26-3" aria-hidden="true" tabindex="-1"></a><span class="co"># initialize the process for i = L</span></span>
<span id="cb26-4"><a href="#cb26-4" aria-hidden="true" tabindex="-1"></a>past <span class="ot">&lt;-</span> <span class="dv">1</span><span class="sc">:</span>L</span>
<span id="cb26-5"><a href="#cb26-5" aria-hidden="true" tabindex="-1"></a>oos <span class="ot">&lt;-</span> (L <span class="sc">+</span> <span class="dv">1</span>)<span class="sc">:</span>(L <span class="sc">+</span> M)</span>
<span id="cb26-6"><a href="#cb26-6" aria-hidden="true" tabindex="-1"></a>df_past <span class="ot">&lt;-</span> df[past, , drop <span class="ot">=</span> <span class="cn">FALSE</span>]</span>
<span id="cb26-7"><a href="#cb26-7" aria-hidden="true" tabindex="-1"></a>df_oos <span class="ot">&lt;-</span> df[<span class="fu">c</span>(past, oos), , drop <span class="ot">=</span> <span class="cn">FALSE</span>]</span>
<span id="cb26-8"><a href="#cb26-8" aria-hidden="true" tabindex="-1"></a>fit_past <span class="ot">&lt;-</span> <span class="fu">update</span>(fit, <span class="at">newdata =</span> df_past, <span class="at">recompile =</span> <span class="cn">FALSE</span>)</span>
<span id="cb26-9"><a href="#cb26-9" aria-hidden="true" tabindex="-1"></a>loglik <span class="ot">&lt;-</span> <span class="fu">log_lik</span>(fit_past, <span class="at">newdata =</span> df_oos, <span class="at">oos =</span> oos)</span>
<span id="cb26-10"><a href="#cb26-10" aria-hidden="true" tabindex="-1"></a>loglikm <span class="ot">&lt;-</span> <span class="fu">rowSums</span>(loglik[, oos])</span>
<span id="cb26-11"><a href="#cb26-11" aria-hidden="true" tabindex="-1"></a>approx_elpds_4sap[L <span class="sc">+</span> <span class="dv">1</span>] <span class="ot">&lt;-</span> <span class="fu">log_mean_exp</span>(loglikm)</span>
<span id="cb26-12"><a href="#cb26-12" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb26-13"><a href="#cb26-13" aria-hidden="true" tabindex="-1"></a><span class="co"># iterate over i &gt; L</span></span>
<span id="cb26-14"><a href="#cb26-14" aria-hidden="true" tabindex="-1"></a>i_refit <span class="ot">&lt;-</span> L</span>
<span id="cb26-15"><a href="#cb26-15" aria-hidden="true" tabindex="-1"></a>refits <span class="ot">&lt;-</span> L</span>
<span id="cb26-16"><a href="#cb26-16" aria-hidden="true" tabindex="-1"></a>ks <span class="ot">&lt;-</span> <span class="cn">NULL</span></span>
<span id="cb26-17"><a href="#cb26-17" aria-hidden="true" tabindex="-1"></a><span class="cf">for</span> (i <span class="cf">in</span> (L <span class="sc">+</span> <span class="dv">1</span>)<span class="sc">:</span>(N <span class="sc">-</span> M)) {</span>
<span id="cb26-18"><a href="#cb26-18" aria-hidden="true" tabindex="-1"></a>  past <span class="ot">&lt;-</span> <span class="dv">1</span><span class="sc">:</span>i</span>
<span id="cb26-19"><a href="#cb26-19" aria-hidden="true" tabindex="-1"></a>  oos <span class="ot">&lt;-</span> (i <span class="sc">+</span> <span class="dv">1</span>)<span class="sc">:</span>(i <span class="sc">+</span> M)</span>
<span id="cb26-20"><a href="#cb26-20" aria-hidden="true" tabindex="-1"></a>  df_past <span class="ot">&lt;-</span> df[past, , drop <span class="ot">=</span> <span class="cn">FALSE</span>]</span>
<span id="cb26-21"><a href="#cb26-21" aria-hidden="true" tabindex="-1"></a>  df_oos <span class="ot">&lt;-</span> df[<span class="fu">c</span>(past, oos), , drop <span class="ot">=</span> <span class="cn">FALSE</span>]</span>
<span id="cb26-22"><a href="#cb26-22" aria-hidden="true" tabindex="-1"></a>  loglik <span class="ot">&lt;-</span> <span class="fu">log_lik</span>(fit_past, <span class="at">newdata =</span> df_oos, <span class="at">oos =</span> oos)</span>
<span id="cb26-23"><a href="#cb26-23" aria-hidden="true" tabindex="-1"></a>  </span>
<span id="cb26-24"><a href="#cb26-24" aria-hidden="true" tabindex="-1"></a>  logratio <span class="ot">&lt;-</span> <span class="fu">sum_log_ratios</span>(loglik, (i_refit <span class="sc">+</span> <span class="dv">1</span>)<span class="sc">:</span>i)</span>
<span id="cb26-25"><a href="#cb26-25" aria-hidden="true" tabindex="-1"></a>  psis_obj <span class="ot">&lt;-</span> <span class="fu">suppressWarnings</span>(<span class="fu">psis</span>(logratio))</span>
<span id="cb26-26"><a href="#cb26-26" aria-hidden="true" tabindex="-1"></a>  k <span class="ot">&lt;-</span> <span class="fu">pareto_k_values</span>(psis_obj)</span>
<span id="cb26-27"><a href="#cb26-27" aria-hidden="true" tabindex="-1"></a>  ks <span class="ot">&lt;-</span> <span class="fu">c</span>(ks, k)</span>
<span id="cb26-28"><a href="#cb26-28" aria-hidden="true" tabindex="-1"></a>  <span class="cf">if</span> (k <span class="sc">&gt;</span> k_thres) {</span>
<span id="cb26-29"><a href="#cb26-29" aria-hidden="true" tabindex="-1"></a>    <span class="co"># refit the model based on the first i observations</span></span>
<span id="cb26-30"><a href="#cb26-30" aria-hidden="true" tabindex="-1"></a>    i_refit <span class="ot">&lt;-</span> i</span>
<span id="cb26-31"><a href="#cb26-31" aria-hidden="true" tabindex="-1"></a>    refits <span class="ot">&lt;-</span> <span class="fu">c</span>(refits, i)</span>
<span id="cb26-32"><a href="#cb26-32" aria-hidden="true" tabindex="-1"></a>    fit_past <span class="ot">&lt;-</span> <span class="fu">update</span>(fit_past, <span class="at">newdata =</span> df_past, <span class="at">recompile =</span> <span class="cn">FALSE</span>)</span>
<span id="cb26-33"><a href="#cb26-33" aria-hidden="true" tabindex="-1"></a>    loglik <span class="ot">&lt;-</span> <span class="fu">log_lik</span>(fit_past, <span class="at">newdata =</span> df_oos, <span class="at">oos =</span> oos)</span>
<span id="cb26-34"><a href="#cb26-34" aria-hidden="true" tabindex="-1"></a>    loglikm <span class="ot">&lt;-</span> <span class="fu">rowSums</span>(loglik[, oos])</span>
<span id="cb26-35"><a href="#cb26-35" aria-hidden="true" tabindex="-1"></a>    approx_elpds_4sap[i <span class="sc">+</span> <span class="dv">1</span>] <span class="ot">&lt;-</span> <span class="fu">log_mean_exp</span>(loglikm)</span>
<span id="cb26-36"><a href="#cb26-36" aria-hidden="true" tabindex="-1"></a>  } <span class="cf">else</span> {</span>
<span id="cb26-37"><a href="#cb26-37" aria-hidden="true" tabindex="-1"></a>    lw <span class="ot">&lt;-</span> <span class="fu">weights</span>(psis_obj, <span class="at">normalize =</span> <span class="cn">TRUE</span>)[, <span class="dv">1</span>]</span>
<span id="cb26-38"><a href="#cb26-38" aria-hidden="true" tabindex="-1"></a>    loglikm <span class="ot">&lt;-</span> <span class="fu">rowSums</span>(loglik[, oos])</span>
<span id="cb26-39"><a href="#cb26-39" aria-hidden="true" tabindex="-1"></a>    approx_elpds_4sap[i <span class="sc">+</span> <span class="dv">1</span>] <span class="ot">&lt;-</span> <span class="fu">log_sum_exp</span>(lw <span class="sc">+</span> loglikm)</span>
<span id="cb26-40"><a href="#cb26-40" aria-hidden="true" tabindex="-1"></a>  }</span>
<span id="cb26-41"><a href="#cb26-41" aria-hidden="true" tabindex="-1"></a>} </span></code></pre></div>
<p>Again, we see that the final Pareto-<span class="math inline">\(k\)</span>-estimates are mostly well below the threshold and that we only needed to refit the model a few times:</p>
<div class="sourceCode" id="cb27"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb27-1"><a href="#cb27-1" aria-hidden="true" tabindex="-1"></a><span class="fu">cat</span>(<span class="st">&quot;Using threshold &quot;</span>, k_thres, </span>
<span id="cb27-2"><a href="#cb27-2" aria-hidden="true" tabindex="-1"></a>    <span class="st">&quot;, model was refit &quot;</span>, <span class="fu">length</span>(refits), </span>
<span id="cb27-3"><a href="#cb27-3" aria-hidden="true" tabindex="-1"></a>    <span class="st">&quot; times, at observations&quot;</span>, refits)</span></code></pre></div>
<pre><code>Using threshold  0.7 , model was refit  2  times, at observations 20 55</code></pre>
<div class="sourceCode" id="cb29"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb29-1"><a href="#cb29-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot_ks</span>(ks, (L <span class="sc">+</span> <span class="dv">1</span>)<span class="sc">:</span>(N <span class="sc">-</span> M))</span></code></pre></div>
<p><img src="" width="60%" style="display: block; margin: auto;" /></p>
<p>The approximate ELPD computed for the 4-SAP case is not as close to its exact counterpart as in the 1-SAP case. In general, the larger <span class="math inline">\(M\)</span>, the larger the variation of the approximate ELPD around the exact ELPD. It turns out that the ELPD estimates of AR-models with <span class="math inline">\(M&gt;1\)</span> show particular variation due to their predictions’ dependency on other predicted values. In Bürkner et al. (2020) we provide further explanation and simulations for these cases.</p>
<div class="sourceCode" id="cb30"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb30-1"><a href="#cb30-1" aria-hidden="true" tabindex="-1"></a>approx_elpd_4sap <span class="ot">&lt;-</span> <span class="fu">sum</span>(approx_elpds_4sap, <span class="at">na.rm =</span> <span class="cn">TRUE</span>)</span>
<span id="cb30-2"><a href="#cb30-2" aria-hidden="true" tabindex="-1"></a><span class="fu">rbind_print</span>(</span>
<span id="cb30-3"><a href="#cb30-3" aria-hidden="true" tabindex="-1"></a>  <span class="st">&quot;Approx LFO&quot;</span> <span class="ot">=</span> approx_elpd_4sap,</span>
<span id="cb30-4"><a href="#cb30-4" aria-hidden="true" tabindex="-1"></a>  <span class="st">&quot;Exact LFO&quot;</span> <span class="ot">=</span> exact_elpd_4sap</span>
<span id="cb30-5"><a href="#cb30-5" aria-hidden="true" tabindex="-1"></a>)</span></code></pre></div>
<pre><code>              ELPD
Approx LFO -408.49
Exact LFO  -404.89</code></pre>
<p>Plotting exact against approximate pointwise predictions confirms that, for a few specific data points, the approximate predictions underestimate the exact predictions.</p>
<div class="sourceCode" id="cb32"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb32-1"><a href="#cb32-1" aria-hidden="true" tabindex="-1"></a>dat_elpd_4sap <span class="ot">&lt;-</span> <span class="fu">data.frame</span>(</span>
<span id="cb32-2"><a href="#cb32-2" aria-hidden="true" tabindex="-1"></a>  <span class="at">approx_elpd =</span> approx_elpds_4sap,</span>
<span id="cb32-3"><a href="#cb32-3" aria-hidden="true" tabindex="-1"></a>  <span class="at">exact_elpd =</span> exact_elpds_4sap</span>
<span id="cb32-4"><a href="#cb32-4" aria-hidden="true" tabindex="-1"></a>)</span>
<span id="cb32-5"><a href="#cb32-5" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb32-6"><a href="#cb32-6" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(dat_elpd_4sap, <span class="fu">aes</span>(<span class="at">x =</span> approx_elpd, <span class="at">y =</span> exact_elpd)) <span class="sc">+</span></span>
<span id="cb32-7"><a href="#cb32-7" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_abline</span>(<span class="at">color =</span> <span class="st">&quot;gray30&quot;</span>) <span class="sc">+</span></span>
<span id="cb32-8"><a href="#cb32-8" aria-hidden="true" tabindex="-1"></a>  <span class="fu">geom_point</span>(<span class="at">size =</span> <span class="dv">2</span>) <span class="sc">+</span></span>
<span id="cb32-9"><a href="#cb32-9" aria-hidden="true" tabindex="-1"></a>  <span class="fu">labs</span>(<span class="at">x =</span> <span class="st">&quot;Approximate ELPDs&quot;</span>, <span class="at">y =</span> <span class="st">&quot;Exact ELPDs&quot;</span>)</span></code></pre></div>
<p><img src="" width="60%" style="display: block; margin: auto;" /></p>
</div>
</div>
<div id="conclusion" class="section level2">
<h2>Conclusion</h2>
<p>In this case study we have shown how to do carry out exact and approximate leave-future-out cross-validation for <span class="math inline">\(M\)</span>-step-ahead prediction tasks. For the data and model used in our example, the PSIS-LFO-CV algorithm provides reasonably stable and accurate results despite not requiring us to refit the model nearly as many times. For more details on approximate LFO-CV, we refer to Bürkner et al. (2020).</p>
<p><br /></p>
</div>
<div id="references" class="section level2">
<h2>References</h2>
<p>Bürkner P. C., Gabry J., &amp; Vehtari A. (2020). Approximate leave-future-out cross-validation for time series models. <em>Journal of Statistical Computation and Simulation</em>, 90(14):2499-2523. :/10.1080/00949655.2020.1783262. <a href="https://www.tandfonline.com/doi/full/10.1080/00949655.2020.1783262">Online</a>. <a href="https://arxiv.org/abs/1902.06281">arXiv preprint</a>.</p>
<p>Vehtari A., Gelman A., &amp; Gabry J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. <em>Statistics and Computing</em>, 27(5), 1413–1432. :10.1007/s11222-016-9696-4. <a href="https://link.springer.com/article/10.1007/s11222-016-9696-4">Online</a>. <a href="https://arxiv.org/abs/1507.04544">arXiv preprint arXiv:1507.04544</a>.</p>
<p>Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2024). Pareto smoothed importance sampling. <em>Journal of Machine Learning Research</em>, 25(72):1-58. <a href="https://jmlr.org/papers/v25/19-556.html">PDF</a></p>
<p><br /></p>
</div>
<div id="appendix" class="section level2">
<h2>Appendix</h2>
<div id="appendix-session-information" class="section level3">
<h3>Appendix: Session information</h3>
<div class="sourceCode" id="cb33"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb33-1"><a href="#cb33-1" aria-hidden="true" tabindex="-1"></a><span class="fu">sessionInfo</span>()</span></code></pre></div>
<pre><code>R version 4.4.2 (2024-10-31)
Platform: x86_64-apple-darwin20
Running under: macOS Sequoia 15.4.1

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRlapack.dylib;  LAPACK version 3.12.0

locale:
[1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: America/Denver
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] ggplot2_4.0.0           brms_2.23.1             bayesplot_1.14.0.9000  
[4] rstanarm_2.32.1         Rcpp_1.1.0              loo_2.9.0              
[7] rstan_2.36.0.9000       StanHeaders_2.36.0.9000 knitr_1.50             

loaded via a namespace (and not attached):
  [1] gridExtra_2.3        inline_0.3.19        sandwich_3.1-1      
  [4] rlang_1.1.6          magrittr_2.0.3       multcomp_1.4-26     
  [7] matrixStats_1.5.0    compiler_4.4.2       callr_3.7.6         
 [10] vctrs_0.6.5          reshape2_1.4.4       stringr_1.5.1       
 [13] pkgconfig_2.0.3      fastmap_1.2.0        backports_1.5.0     
 [16] labeling_0.4.3       threejs_0.3.3        promises_1.3.3      
 [19] rmarkdown_2.29       markdown_1.13        ps_1.9.1            
 [22] nloptr_2.1.0         xfun_0.53            cachem_1.1.0        
 [25] jsonlite_2.0.0       later_1.4.3          parallel_4.4.2      
 [28] R6_2.6.1             dygraphs_1.1.1.6     bslib_0.9.0         
 [31] stringi_1.8.7        RColorBrewer_1.1-3   boot_1.3-31         
 [34] jquerylib_0.1.4      estimability_1.5.1   zoo_1.8-14          
 [37] base64enc_0.1-3      httpuv_1.6.16        Matrix_1.7-1        
 [40] splines_4.4.2        igraph_2.1.4         tidyselect_1.2.1    
 [43] abind_1.4-8          yaml_2.3.10          codetools_0.2-20    
 [46] miniUI_0.1.1.1       curl_7.0.0           processx_3.8.6      
 [49] pkgbuild_1.4.8       lattice_0.22-6       tibble_3.3.0        
 [52] plyr_1.8.9           shiny_1.11.1         withr_3.0.2         
 [55] bridgesampling_1.1-2 S7_0.2.0             posterior_1.6.1     
 [58] coda_0.19-4.1        evaluate_1.0.4       survival_3.7-0      
 [61] RcppParallel_5.1.10  xts_0.14.1           pillar_1.11.0       
 [64] tensorA_0.36.2.1     checkmate_2.3.3      DT_0.33             
 [67] stats4_4.4.2         shinyjs_2.1.0        distributional_0.5.0
 [70] generics_0.1.4       rstantools_2.5.0     scales_1.4.0        
 [73] minqa_1.2.7          gtools_3.9.5         xtable_1.8-4        
 [76] glue_1.8.0           emmeans_1.10.2       tools_4.4.2         
 [79] shinystan_2.7.0      lme4_1.1-35.4        colourpicker_1.3.0  
 [82] mvtnorm_1.3-3        grid_4.4.2           QuickJSR_1.2.2      
 [85] crosstalk_1.2.1      nlme_3.1-166         cli_3.6.5           
 [88] Brobdingnag_1.2-9    dplyr_1.1.4          V8_4.4.2            
 [91] gtable_0.3.6         sass_0.4.10          digest_0.6.37       
 [94] TH.data_1.1-2        htmlwidgets_1.6.4    farver_2.1.2        
 [97] htmltools_0.5.8.1    lifecycle_1.0.4      mime_0.13           
[100] shinythemes_1.2.0    MASS_7.3-61         </code></pre>
</div>
<div id="appendix-licenses" class="section level3">
<h3>Appendix: Licenses</h3>
<ul>
<li>Code © 2018, Paul Bürkner, Jonah Gabry, Aki Vehtari (licensed under BSD-3).</li>
<li>Text © 2018, Paul Bürkner, Jonah Gabry, Aki Vehtari (licensed under CC-BY-NC 4.0).</li>
</ul>
</div>
</div>



<!-- code folding -->


<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
  (function () {
    var script = document.createElement("script");
    script.type = "text/javascript";
    script.src  = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
    document.getElementsByTagName("head")[0].appendChild(script);
  })();
</script>

</body>
</html>