File: E_loo.Rd

package info (click to toggle)
r-cran-loo 2.9.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 4,836 kB
  • sloc: sh: 15; makefile: 2
file content (129 lines) | stat: -rw-r--r-- 4,616 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/E_loo.R
\name{E_loo}
\alias{E_loo}
\alias{E_loo.default}
\alias{E_loo.matrix}
\title{Compute weighted expectations}
\usage{
E_loo(x, psis_object, ...)

\method{E_loo}{default}(
  x,
  psis_object,
  ...,
  type = c("mean", "variance", "sd", "quantile"),
  probs = NULL,
  log_ratios = NULL
)

\method{E_loo}{matrix}(
  x,
  psis_object,
  ...,
  type = c("mean", "variance", "sd", "quantile"),
  probs = NULL,
  log_ratios = NULL
)
}
\arguments{
\item{x}{A numeric vector or matrix.}

\item{psis_object}{An object returned by \code{\link[=psis]{psis()}}.}

\item{...}{Arguments passed to individual methods.}

\item{type}{The type of expectation to compute. The options are
\code{"mean"}, \code{"variance"}, \code{"sd"}, and \code{"quantile"}.}

\item{probs}{For computing quantiles, a vector of probabilities.}

\item{log_ratios}{Optionally, a vector or matrix (the same dimensions as \code{x})
of raw (not smoothed) log ratios. If working with log-likelihood values,
the log ratios are the \strong{negative} of those values. If \code{log_ratios} is
specified we are able to compute more accurate \link[=pareto-k-diagnostic]{Pareto k}
diagnostics specific to \code{E_loo()}.}
}
\value{
A named list with the following components:
\describe{
\item{\code{value}}{
The result of the computation.

For the matrix method, \code{value} is a vector with \code{ncol(x)}
elements, with one exception: when \code{type="quantile"} and
multiple values are specified in \code{probs} the \code{value} component of
the returned object is a \code{length(probs)} by \code{ncol(x)} matrix.

For the default/vector method the \code{value} component is scalar, with
one exception: when \code{type="quantile"} and multiple values
are specified in \code{probs} the \code{value} component is a vector with
\code{length(probs)} elements.
}
\item{\code{pareto_k}}{
Function-specific diagnostic.

For the matrix method it will be a vector of length \code{ncol(x)}
containing estimates of the shape parameter \eqn{k} of the
generalized Pareto distribution. For the default/vector method,
the estimate is a scalar. If \code{log_ratios} is not specified when
calling \code{E_loo()}, the smoothed log-weights are used to estimate
Pareto-k's, which may produce optimistic estimates.

For \code{type="mean"}, \code{type="var"}, and \code{type="sd"}, the returned Pareto-k is
usually the maximum of the Pareto-k's for the left and right tail of \eqn{hr}
and the right tail of \eqn{r}, where \eqn{r} is the importance ratio and
\eqn{h=x} for \code{type="mean"} and \eqn{h=x^2} for \code{type="var"} and \code{type="sd"}.
If \eqn{h} is binary, constant, or not finite, or if \code{type="quantile"}, the
returned Pareto-k is the Pareto-k for the right tail of \eqn{r}.
}
}
}
\description{
The \code{E_loo()} function computes weighted expectations (means, variances,
quantiles) using the importance weights obtained from the \link[=psis]{PSIS}
smoothing procedure. The expectations estimated by the \code{E_loo()} function
assume that the PSIS approximation is working well.
\strong{A small \link[=pareto-k-diagnostic]{Pareto k} estimate is necessary,
but not sufficient, for \code{E_loo()} to give reliable estimates}. If the
\code{log_ratios} argument is provided, \code{E_loo()} also computes a function
specific Pareto k diagnostic, which must also be small for a reliable
estimate. See more details below.
}
\examples{
\donttest{
if (requireNamespace("rstanarm", quietly = TRUE)) {
# Use rstanarm package to quickly fit a model and get both a log-likelihood
# matrix and draws from the posterior predictive distribution
library("rstanarm")

# data from help("lm")
ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
d <- data.frame(
  weight = c(ctl, trt),
  group = gl(2, 10, 20, labels = c("Ctl","Trt"))
)
fit <- stan_glm(weight ~ group, data = d, refresh = 0)
yrep <- posterior_predict(fit)
dim(yrep)

log_ratios <- -1 * log_lik(fit)
dim(log_ratios)

r_eff <- relative_eff(exp(-log_ratios), chain_id = rep(1:4, each = 1000))
psis_object <- psis(log_ratios, r_eff = r_eff, cores = 2)

E_loo(yrep, psis_object, type = "mean")
E_loo(yrep, psis_object, type = "var")
E_loo(yrep, psis_object, type = "sd")
E_loo(yrep, psis_object, type = "quantile", probs = 0.5) # median
E_loo(yrep, psis_object, type = "quantile", probs = c(0.1, 0.9))

# We can get more accurate Pareto k diagnostic if we also provide
# the log_ratios argument
E_loo(yrep, psis_object, type = "mean", log_ratios = log_ratios)
}
}

}