1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/loo.R
\name{loo}
\alias{loo}
\alias{loo.array}
\alias{loo.matrix}
\alias{loo.function}
\alias{loo_i}
\alias{is.loo}
\alias{is.psis_loo}
\title{Efficient approximate leave-one-out cross-validation (LOO)}
\usage{
loo(x, ...)
\method{loo}{array}(
x,
...,
r_eff = 1,
save_psis = FALSE,
cores = getOption("mc.cores", 1),
is_method = c("psis", "tis", "sis")
)
\method{loo}{matrix}(
x,
...,
r_eff = 1,
save_psis = FALSE,
cores = getOption("mc.cores", 1),
is_method = c("psis", "tis", "sis")
)
\method{loo}{`function`}(
x,
...,
data = NULL,
draws = NULL,
r_eff = 1,
save_psis = FALSE,
cores = getOption("mc.cores", 1),
is_method = c("psis", "tis", "sis")
)
loo_i(i, llfun, ..., data = NULL, draws = NULL, r_eff = 1, is_method = "psis")
is.loo(x)
is.psis_loo(x)
}
\arguments{
\item{x}{A log-likelihood array, matrix, or function. The \strong{Methods (by class)}
section, below, has detailed descriptions of how to specify the inputs for
each method.}
\item{r_eff}{Vector of relative effective sample size estimates for the
likelihood (\code{exp(log_lik)}) of each observation. This is related to
the relative efficiency of estimating the normalizing term in
self-normalized importance sampling when using posterior draws obtained
with MCMC. If MCMC draws are used and \code{r_eff} is not provided then
the reported PSIS effective sample sizes and Monte Carlo error estimates
can be over-optimistic. If the posterior draws are (near) independent then
\code{r_eff=1} can be used. \code{r_eff} has to be a scalar (same value is used
for all observations) or a vector with length equal to the number of
observations. The default value is 1. See the \code{\link[=relative_eff]{relative_eff()}} helper
functions for help computing \code{r_eff}.}
\item{save_psis}{Should the \code{psis} object created internally by \code{loo()} be
saved in the returned object? The \code{loo()} function calls \code{\link[=psis]{psis()}}
internally but by default discards the (potentially large) \code{psis} object
after using it to compute the LOO-CV summaries. Setting \code{save_psis=TRUE}
will add a \code{psis_object} component to the list returned by \code{loo}.
This is useful if you plan to use the \code{\link[=E_loo]{E_loo()}} function to compute
weighted expectations after running \code{loo}. Several functions in the
\pkg{bayesplot} package also accept \code{psis} objects.}
\item{cores}{The number of cores to use for parallelization. This defaults to
the option \code{mc.cores} which can be set for an entire R session by
\code{options(mc.cores = NUMBER)}. The old option \code{loo.cores} is now
deprecated but will be given precedence over \code{mc.cores} until
\code{loo.cores} is removed in a future release. \strong{As of version
2.0.0 the default is now 1 core if \code{mc.cores} is not set}, but we
recommend using as many (or close to as many) cores as possible.
\itemize{
\item Note for Windows 10 users: it is \strong{strongly}
\href{https://github.com/stan-dev/loo/issues/94}{recommended} to avoid using
the \code{.Rprofile} file to set \code{mc.cores} (using the \code{cores} argument or
setting \code{mc.cores} interactively or in a script is fine).
}}
\item{is_method}{The importance sampling method to use. The following methods
are implemented:
\itemize{
\item \code{\link[=psis]{"psis"}}: Pareto-Smoothed Importance Sampling (PSIS). Default method.
\item \code{\link[=tis]{"tis"}}: Truncated Importance Sampling (TIS) with truncation at
\code{sqrt(S)}, where \code{S} is the number of posterior draws.
\item \code{\link[=sis]{"sis"}}: Standard Importance Sampling (SIS).
}}
\item{data, draws, ...}{For the \code{loo.function()} method and the \code{loo_i()}
function, these are the data, posterior draws, and other arguments to pass
to the log-likelihood function. See the \strong{Methods (by class)} section
below for details on how to specify these arguments.}
\item{i}{For \code{loo_i()}, an integer in \code{1:N}.}
\item{llfun}{For \code{loo_i()}, the same as \code{x} for the
\code{loo.function()} method. A log-likelihood function as described in the
\strong{Methods (by class)} section.}
}
\value{
The \code{loo()} methods return a named list with class
\code{c("psis_loo", "loo")} and components:
\describe{
\item{\code{estimates}}{
A matrix with two columns (\code{Estimate}, \code{SE}) and three rows (\code{elpd_loo},
\code{p_loo}, \code{looic}). This contains point estimates and standard errors of the
expected log pointwise predictive density (\code{\link[=loo-glossary]{elpd_loo}}), the
effective number of parameters (\code{\link[=loo-glossary]{p_loo}}) and the LOO
information criterion \code{looic} (which is just \code{-2 * elpd_loo}, i.e.,
converted to deviance scale).
}
\item{\code{pointwise}}{
A matrix with five columns (and number of rows equal to the number of
observations) containing the pointwise contributions of the measures
(\code{elpd_loo}, \code{mcse_elpd_loo}, \code{p_loo}, \code{looic}, \code{influence_pareto_k}).
in addition to the three measures in \code{estimates}, we also report
pointwise values of the Monte Carlo standard error of \code{\link[=loo-glossary]{elpd_loo}}
(\code{\link[=loo-glossary]{mcse_elpd_loo}}), and statistics describing the influence of
each observation on the posterior distribution (\code{influence_pareto_k}).
These are the estimates of the shape parameter \eqn{k} of the
generalized Pareto fit to the importance ratios for each leave-one-out
distribution (see the \link{pareto-k-diagnostic} page for details).
}
\item{\code{diagnostics}}{
A named list containing two vectors:
\itemize{
\item \code{pareto_k}: Importance sampling reliability diagnostics. By default,
these are equal to the \code{influence_pareto_k} in \code{pointwise}.
Some algorithms can improve importance sampling reliability and
modify these diagnostics. See the \link{pareto-k-diagnostic} page for details.
\item \code{n_eff}: PSIS effective sample size estimates.
}
}
\item{\code{psis_object}}{
This component will be \code{NULL} unless the \code{save_psis} argument is set to
\code{TRUE} when calling \code{loo()}. In that case \code{psis_object} will be the object
of class \code{"psis"} that is created when the \code{loo()} function calls \code{\link[=psis]{psis()}}
internally to do the PSIS procedure.
}
}
The \code{loo_i()} function returns a named list with components
\code{pointwise} and \code{diagnostics}. These components have the same
structure as the \code{pointwise} and \code{diagnostics} components of the
object returned by \code{loo()} except they contain results for only a single
observation.
}
\description{
The \code{loo()} methods for arrays, matrices, and functions compute PSIS-LOO
CV, efficient approximate leave-one-out (LOO) cross-validation for Bayesian
models using Pareto smoothed importance sampling (\link[=psis]{PSIS}). This is
an implementation of the methods described in Vehtari, Gelman, and Gabry
(2017) and Vehtari, Simpson, Gelman, Yao, and Gabry (2024).
The \code{loo_i()} function enables testing log-likelihood
functions for use with the \code{loo.function()} method.
}
\details{
The \code{loo()} function is an S3 generic and methods are provided for
3-D pointwise log-likelihood arrays, pointwise log-likelihood matrices, and
log-likelihood functions. The array and matrix methods are the most
convenient, but for models fit to very large datasets the \code{loo.function()}
method is more memory efficient and may be preferable.
}
\section{Methods (by class)}{
\itemize{
\item \code{loo(array)}: An \eqn{I} by \eqn{C} by \eqn{N} array, where \eqn{I}
is the number of MCMC iterations per chain, \eqn{C} is the number of
chains, and \eqn{N} is the number of data points.
\item \code{loo(matrix)}: An \eqn{S} by \eqn{N} matrix, where \eqn{S} is the size
of the posterior sample (with all chains merged) and \eqn{N} is the number
of data points.
\item \code{loo(`function`)}: A function \code{f()} that takes arguments \code{data_i} and \code{draws} and returns a
vector containing the log-likelihood for a single observation \code{i} evaluated
at each posterior draw. The function should be written such that, for each
observation \code{i} in \code{1:N}, evaluating
\if{html}{\out{<div class="sourceCode">}}\preformatted{f(data_i = data[i,, drop=FALSE], draws = draws)
}\if{html}{\out{</div>}}
results in a vector of length \code{S} (size of posterior sample). The
log-likelihood function can also have additional arguments but \code{data_i} and
\code{draws} are required.
If using the function method then the arguments \code{data} and \code{draws} must also
be specified in the call to \code{loo()}:
\itemize{
\item \code{data}: A data frame or matrix containing the data (e.g.
observed outcome and predictors) needed to compute the pointwise
log-likelihood. For each observation \code{i}, the \code{i}th row of
\code{data} will be passed to the \code{data_i} argument of the
log-likelihood function.
\item \code{draws}: An object containing the posterior draws for any
parameters needed to compute the pointwise log-likelihood. Unlike
\code{data}, which is indexed by observation, for each observation the
entire object \code{draws} will be passed to the \code{draws} argument of
the log-likelihood function.
\item The \code{...} can be used if your log-likelihood function takes additional
arguments. These arguments are used like the \code{draws} argument in that they
are recycled for each observation.
}
}}
\section{Defining \code{loo()} methods in a package}{
Package developers can define
\code{loo()} methods for fitted models objects. See the example \code{loo.stanfit()}
method in the \strong{Examples} section below for an example of defining a
method that calls \code{loo.array()}. The \code{loo.stanreg()} method in the
\strong{rstanarm} package is an example of defining a method that calls
\code{loo.function()}.
}
\examples{
### Array and matrix methods (using example objects included with loo package)
# Array method
LLarr <- example_loglik_array()
rel_n_eff <- relative_eff(exp(LLarr))
loo(LLarr, r_eff = rel_n_eff, cores = 2)
# Matrix method
LLmat <- example_loglik_matrix()
rel_n_eff <- relative_eff(exp(LLmat), chain_id = rep(1:2, each = 500))
loo(LLmat, r_eff = rel_n_eff, cores = 2)
### Using log-likelihood function instead of array or matrix
set.seed(124)
# Simulate data and draw from posterior
N <- 50; K <- 10; S <- 100; a0 <- 3; b0 <- 2
p <- rbeta(1, a0, b0)
y <- rbinom(N, size = K, prob = p)
a <- a0 + sum(y); b <- b0 + N * K - sum(y)
fake_posterior <- as.matrix(rbeta(S, a, b))
dim(fake_posterior) # S x 1
fake_data <- data.frame(y,K)
dim(fake_data) # N x 2
llfun <- function(data_i, draws) {
# each time called internally within loo the arguments will be equal to:
# data_i: ith row of fake_data (fake_data[i,, drop=FALSE])
# draws: entire fake_posterior matrix
dbinom(data_i$y, size = data_i$K, prob = draws, log = TRUE)
}
# Use the loo_i function to check that llfun works on a single observation
# before running on all obs. For example, using the 3rd obs in the data:
loo_3 <- loo_i(i = 3, llfun = llfun, data = fake_data, draws = fake_posterior)
print(loo_3$pointwise[, "elpd_loo"])
# Use loo.function method (default r_eff=1 is used as this posterior not obtained via MCMC)
loo_with_fn <- loo(llfun, draws = fake_posterior, data = fake_data)
# If we look at the elpd_loo contribution from the 3rd obs it should be the
# same as what we got above with the loo_i function and i=3:
print(loo_with_fn$pointwise[3, "elpd_loo"])
print(loo_3$pointwise[, "elpd_loo"])
# Check that the loo.matrix method gives same answer as loo.function method
log_lik_matrix <- sapply(1:N, function(i) {
llfun(data_i = fake_data[i,, drop=FALSE], draws = fake_posterior)
})
loo_with_mat <- loo(log_lik_matrix)
all.equal(loo_with_mat$estimates, loo_with_fn$estimates) # should be TRUE!
\dontrun{
### For package developers: defining loo methods
# An example of a possible loo method for 'stanfit' objects (rstan package).
# A similar method is included in the rstan package.
# In order for users to be able to call loo(stanfit) instead of
# loo.stanfit(stanfit) the NAMESPACE needs to be handled appropriately
# (roxygen2 and devtools packages are good for that).
#
loo.stanfit <-
function(x,
pars = "log_lik",
...,
save_psis = FALSE,
cores = getOption("mc.cores", 1)) {
stopifnot(length(pars) == 1L)
LLarray <- loo::extract_log_lik(stanfit = x,
parameter_name = pars,
merge_chains = FALSE)
r_eff <- loo::relative_eff(x = exp(LLarray), cores = cores)
loo::loo.array(LLarray,
r_eff = r_eff,
cores = cores,
save_psis = save_psis)
}
}
}
\references{
Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model
evaluation using leave-one-out cross-validation and WAIC.
\emph{Statistics and Computing}. 27(5), 1413--1432. doi:10.1007/s11222-016-9696-4
(\href{https://link.springer.com/article/10.1007/s11222-016-9696-4}{journal version},
\href{https://arxiv.org/abs/1507.04544}{preprint arXiv:1507.04544}).
Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2024).
Pareto smoothed importance sampling. \emph{Journal of Machine Learning Research},
25(72):1-58.
\href{https://jmlr.org/papers/v25/19-556.html}{PDF}
}
\seealso{
\itemize{
\item The \strong{loo} package \href{https://mc-stan.org/loo/articles/index.html}{vignettes}
for demonstrations.
\item The \href{https://mc-stan.org/loo/articles/online-only/faq.html}{FAQ page} on
the \strong{loo} website for answers to frequently asked questions.
\item \code{\link[=psis]{psis()}} for the underlying Pareto Smoothed Importance Sampling (PSIS)
procedure used in the LOO-CV approximation.
\item \link{pareto-k-diagnostic} for convenience functions for looking at diagnostics.
\item \code{\link[=loo_compare]{loo_compare()}} for model comparison.
}
}
|