File: LSD.clusterplot.R

package info (click to toggle)
r-cran-lsd 4.1-0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 420 kB
  • sloc: makefile: 2
file content (257 lines) | stat: -rwxr-xr-x 12,477 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257


### singleclusterplot ###


#' @export
#' @name singleclusterplot
#' @aliases LSD.singleclusterplot
#' @title Visualize two-dimensional data clusters (add to an existing plot)
#' @description Depict a numeric matrix or list utilizing the underlying distribution quantiles of one dimension in a color encoded fashion (add to an existing plot).
#' @param input matrix or list with numerical entries.
#' @param at a integer vector containing the x-positions corresponding to the columns of 'input'.
#' @param fromto a numeric vector containing the range of quantiles (between 0 and 1) to be plotted.
#' @param colpal a character vector containing R built-in color names or a name of a \code{LSD} colorpalette as a character string (see disco() or \code{\link{disco}}).
#' @param simulate logical: if \code{TRUE} (\code{FALSE} by default), a converted colorpalette is used to simulate dichromat vision according to \url{http://www.daltonize.org} (see \code{\link{daltonize}}).
#' @param daltonize logical: if \code{TRUE} (\code{FALSE} by default), a converted colorpalette is used to enhance dichromat vision according to \url{http://www.daltonize.org} (see \code{\link{daltonize}}).
#' @param cvd character string implying the type of color vision deficiency ("p" for protanope, "d" for deuteranope or "t" for tritanope).
#' @param nrcol a non-negative integer specifying the number of colors to be used (defaults to 25, if not specified).
#' @param outer.col R built-in color to be used for outlier lines (lines outside of 'fromto').
#' @param rev logical: if \code{TRUE} (\code{FALSE} by default), a reversed colorpalette is used.
#' @param alpha alpha value: a two-digit integer between 01 and 99 for color opacity, i.e. appearance of partial or full transparency (usage omitted by default).
#' @param quartiles.col a character vector containing three R built-in colors for quartile lines (c('0.25','0.5','0.75')).
#' @param add.quartiles logical: if \code{TRUE} (by default), lines are plotted corresponding to the quartiles.
#' @author Achim Tresch, Bjoern Schwalb
#' @seealso \code{\link{clusterplot}}, \code{\link{align}}, \code{\link{demotour}}, \code{\link{disco}}, \code{\link{colorpalette}}
#' @examples samples = 100
#' probes = 200
#' clus = matrix(rnorm(probes*samples,sd=1),ncol=probes)
#' 
#' clus = rbind(
#' 	t(t(clus)+sin(1:probes/10))+1:nrow(clus)/samples,
#' 	t(t(clus)+sin(pi/2+1:probes/10))+1:nrow(clus)/samples)
#' 
#' emptyplot(xlim = c(1,ncol(clus)),ylim = range(clus))
#' singleclusterplot(clus)
#' axis(1)
#' axis(2)
#' box()
#' @keywords cluster


singleclusterplot = function(input,at = NULL,fromto = c(0.05,0.95),colpal = "standardheat",simulate = FALSE,daltonize = FALSE,cvd = "p",nrcol = 25,outer.col = "lightgrey",rev = FALSE,alpha = NULL,quartiles.col = c("grey","black","grey"),add.quartiles = TRUE)
{
	# stops execution, if 'input' is neither a list nor a matrix and executes an error action #
	
	if (!is.matrix(input) & !is.list(input)) stop("'input' must be a matrix or a list !")
	
	# define x-positions corresponding to the columns/elements of 'input' #
	
	if (is.null(at)) if (is.matrix(input)){at=1:ncol(input)} else if (is.list(input)){at=1:length(input)}
	
	# preliminaries #
	
	probes = length(at)
	
	# wrapper for the lines function #
	
	drawline = function(y,col="black",lwd=1,lty=1){lines(at[1:length(y)],y,type="l",col=col,lwd=lwd,lty=lty)}
	
	# optional drawing of outlier lines #
	
	if (is.matrix(input)){if (outer.col!="none") apply(input,1,drawline,col=outer.col)}
	
	# provide 'colpal' via colorpalette #
	
	colpal = colorpalette(colpal,nrcol,simulate = simulate,daltonize = daltonize,cvd = cvd,alpha = alpha,rev = rev)
	colpal = c(rev(colpal),colpal)

	# determine quantiles among columns/elements of 'input' #

	if (is.matrix(input)){
		qline = apply(input,2,quantile,probs=seq(fromto[1],fromto[2],length=(length(colpal)+1)),na.rm=TRUE)
	} else if (is.list(input)){
		qline = lapply(input,quantile,probs=seq(fromto[1],fromto[2],length=(length(colpal)+1)),na.rm=TRUE)
		qline = sapply(qline,c)
	}
	
	# plot polygons according to qline #

	for (j in 1:length(colpal)){polygon(at[c(1:probes,probes:1)],c(qline[j,],qline[j+1,probes:1]),col = colpal[j],lty=0)}
	
	# add lines corresponding to the quartiles #

	if (add.quartiles){
		if (is.matrix(input)){
			drawline(apply(input,2,quantile,probs=0.5,na.rm=TRUE),col=quartiles.col[2],lwd=2)
			drawline(apply(input,2,quantile,probs=0.25,na.rm=TRUE),col=quartiles.col[1],lwd=2)
			drawline(apply(input,2,quantile,probs=0.75,na.rm=TRUE),col=quartiles.col[3],lwd=2)
		} else if (is.list(input)){
			drawline(sapply(input,quantile,probs=0.5,na.rm=TRUE),col=quartiles.col[2],lwd=2)
			drawline(sapply(input,quantile,probs=0.25,na.rm=TRUE),col=quartiles.col[1],lwd=2)
			drawline(sapply(input,quantile,probs=0.75,na.rm=TRUE),col=quartiles.col[3],lwd=2)
			
		}
	}
}


# alias #


LSD.singleclusterplot = singleclusterplot


### clusterplot ###


#' @export
#' @name clusterplot
#' @aliases LSD.clusterplot
#' @title Visualize two-dimensional data clusters
#' @description Depict a numeric matrix or list utilizing the underlying distribution quantiles of one dimension in a color encoded fashion.
#' @param input matrix or list with numerical entries.
#' @param label a character vector assigning rows/elements of 'input' to clusters (if specified, multiple clusters can be depicted in different colors and/or subsequent plots).
#' @param at a integer vector containing the x-positions corresponding to the columns of 'input'.
#' @param main title(s) of the plot, standard graphics parameter.
#' @param xlim x limits, standard graphics parameter.
#' @param ylim y limits, standard graphics parameter.
#' @param xlabels a character vector containing labels for the x-axis.
#' @param fromto a numeric vector containing the range of quantiles (between 0 and 1) to be plotted.
#' @param colpal a character vector containing R built-in color names or a name of a \code{LSD} colorpalette as a character string (see disco() or \code{\link{disco}}).
#' @param simulate logical: if \code{TRUE} (\code{FALSE} by default), a converted colorpalette is used to simulate dichromat vision according to \url{http://www.daltonize.org} (see \code{\link{daltonize}}).
#' @param daltonize logical: if \code{TRUE} (\code{FALSE} by default), a converted colorpalette is used to enhance dichromat vision according to \url{http://www.daltonize.org} (see \code{\link{daltonize}}).
#' @param cvd character string implying the type of color vision deficiency ("p" for protanope, "d" for deuteranope or "t" for tritanope).
#' @param nrcol a non-negative integer specifying the number of colors to be used (defaults to 25, if not specified).
#' @param outer.col R built-in color to be used for outlier lines (lines outside of 'fromto').
#' @param quartiles.col a character vector containing three R built-in colors for quartile lines (c('0.25','0.5','0.75')).
#' @param add.quartiles logical: if \code{TRUE} (by default), lines are plotted corresponding to the quartiles.
#' @param separate if \code{TRUE} (by default), different clusters are depicted in subsequent plots.
#' @param rev logical: if \code{TRUE} (\code{FALSE} by default), a reversed colorpalette is used.
#' @param size logical: if \code{TRUE} (by default), the size of each cluster is added to the title of the respective plot.
#' @param alpha alpha value: a two-digit integer between 01 and 99 for color opacity, i.e. appearance of partial or full transparency (usage omitted by default).
#' @param axes logical: if \code{TRUE} (by default), a box and axes are added to the plot (if \code{FALSE}, custom specification of axes can be achieved via basic R graphics functions).
#' @param ... additional parameters to be passed to points and plot.
#' @author Achim Tresch, Bjoern Schwalb
#' @seealso \code{\link{singleclusterplot}}, \code{\link{align}}, \code{\link{demotour}}, \code{\link{disco}}, \code{\link{colorpalette}}
#' @examples samples = 100
#' probes = 75
#' at = 1:probes
#' clus = matrix(rnorm(probes*samples,sd=1),ncol=probes)
#' 
#' clus = rbind(
#' 	t(t(clus)+sin(1:probes/10))+1:nrow(clus)/samples,
#' 	t(t(clus)+sin(pi/2+1:probes/10))+1:nrow(clus)/samples)
#' 
#' quartiles.col = c("transparent","black","transparent")
#' colpal = c("standardheat","crazyblue","crazyred","crazygreen")
#' 
#' labs = paste("cluster",kmeans(clus,4)$cluster)
#' clusterplot(clus,fromto=c(0,1))
#' 
#' clusterplot(clus,labs,separate=FALSE,xaxt="n",fromto=c(0.4,0.6),colpal=colpal,
#' 	outer.col="none",ylim=c(-2,3),quartiles.col = quartiles.col)
#'  
#' clusterplot(clus,labs,colpal=colpal)
#' 
#' labs = paste("cluster",kmeans(clus,2)$cluster)
#' colpal = c("greens","purples")
#' clusterplot(clus,labs,separate=FALSE,xaxt="n",fromto=c(0.3,0.7),colpal=colpal,
#' 	outer.col="none",ylim=c(-1,2),alpha=50,quartiles.col = quartiles.col)
#' @keywords cluster


clusterplot = function(input,label = NULL,at = NULL,main = NULL,xlim = NULL,ylim = NULL,xlabels = NULL,fromto = c(0.05,0.95),colpal = "standardheat",simulate = FALSE,daltonize = FALSE,cvd = "p",nrcol = 25,outer.col = "lightgrey",quartiles.col = c("grey","black","grey"),add.quartiles = TRUE,separate = TRUE,rev = FALSE,size = TRUE,alpha = NULL,axes = TRUE,...)
{
	# stops execution, if 'input' is neither a list nor a matrix and executes an error action #
	
	if (!is.matrix(input) & !is.list(input)) stop("'input' must be a matrix or a list !")
	
	# define x-positions corresponding to the columns of 'input' #
	
	if (is.null(at)) if (is.matrix(input)){at=1:ncol(input)} else if (is.list(input)){at=1:length(input)}	
	
	# preliminaries #
	
	probes = length(at)
	if (is.null(xlim)){xlim=c(min(at),max(at))}
	maxp = xlim[2]
	minp = xlim[1]
	if (is.null(ylim)) if (is.matrix(input)){ylim=c(min(input,na.rm=TRUE),max(input,na.rm=TRUE))} else if (is.list(input)){ylim=c(min(unlist(input),na.rm=TRUE),max(unlist(input),na.rm=TRUE))}
	if (is.null(xlabels)) xlabels = 1:length(at)

	# one cluster (i.e. one plot), if label = NULL #
	
	if (is.null(label)){
		plot.new()
		plot.window(xlim = xlim,ylim = ylim,...)
		if (size){
			if (is.matrix(input)){
				main = paste(main,"  ( #",nrow(input)," )")
			} else if (is.list(input)){
				input.length.range = range(as.numeric(summary(input)[,"Length"]))
				main = paste(main,"  ( #",input.length.range[1],"-",input.length.range[2]," )")
			}
		}
		title(main)
		if (axes){
			axis(1,at=at,labels=xlabels,...)
			axis(2)
			box()
		}
		singleclusterplot(input=input,at=at,fromto=fromto,colpal=colpal,simulate=simulate,daltonize=daltonize,cvd=cvd,nrcol=nrcol,outer.col=outer.col,add.quartiles=add.quartiles,quartiles.col=quartiles.col,rev=rev,alpha=alpha)
	}

	# multiple clusters, if label is specified #
	
	if (!is.null(label)) {
		clusternames = sort(unique(label))
		nrclusters = length(clusternames)
		if (!is.matrix(input)) stop("'input' must be a matrix, if 'label' is specified !")
		clustersets = split(1:nrow(input), factor(label))
		if (!is.list(colpal)) colpal = as.list(colpal)
		if (length(colpal) < nrclusters) colpal = rep(colpal, nrclusters)
		
		# multiple clusters in one plots #
		
		if (separate == FALSE){
			plot.new()
			plot.window(xlim = xlim,ylim = ylim,...)
			if (size){main = paste(main,"  ( #",nrow(input)," )")}
			title(main)
			if (axes){
				axis(1,at=at,labels=xlabels,...)
				axis(2)
				box()
			}
		}
		
		# multiple clusters in subsequent plots #
	
		if (separate == TRUE) par(mfrow = windowxy(nrclusters))
		for (j in seq(clusternames)){
			if (separate == TRUE){
				if (length(main) == length(clustersets[[j]])) clustermain = main[j]	else clustermain = paste(main,clusternames[j])
				plot.new()
				plot.window(xlim = xlim,ylim = ylim,...)
				if (size){clustermain = paste(clustermain,"  ( #",length(clustersets[[j]])," )")}
				title(clustermain)
				if (axes){
					axis(1,at=at,labels=xlabels,...)
					axis(2)
					box()
				}
			}
			singleclusterplot(input=input[clustersets[[j]],,drop = FALSE],at=at,fromto=fromto,colpal=colpal[[j]],simulate=simulate,daltonize=daltonize,cvd=cvd,nrcol=nrcol,outer.col=outer.col,add.quartiles=add.quartiles,quartiles.col=quartiles.col,rev=rev,alpha=alpha)
		}
	}
}


# alias #


LSD.clusterplot = clusterplot