1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
### singlefusionplot ###
#' @export
#' @name singlefusionplot
#' @aliases LSD.singlefusionplot
#' @title Visualize two-dimensional data clusters (add to an existing plot)
#' @description Depict a numeric matrix or list utilizing the underlying distribution quantiles of one dimension in a color encoded fashion (add to an existing plot).
#' @param x a numeric vector.
#' @param y a numeric vector.
#' @param fromto a numeric vector containing the range of quantiles (between 0 and 1) to be plotted.
#' @param colpal a character vector containing R built-in color names or a name of a \code{LSD} colorpalette as a character string (see disco() or \code{\link{disco}}).
#' @param simulate logical: if \code{TRUE} (\code{FALSE} by default), a converted colorpalette is used to simulate dichromat vision according to \url{http://www.daltonize.org} (see \code{\link{daltonize}}).
#' @param daltonize logical: if \code{TRUE} (\code{FALSE} by default), a converted colorpalette is used to enhance dichromat vision according to \url{http://www.daltonize.org} (see \code{\link{daltonize}}).
#' @param cvd character string implying the type of color vision deficiency ("p" for protanope, "d" for deuteranope or "t" for tritanope).
#' @param nrcol a non-negative integer specifying the number of colors to be used (defaults to 25, if not specified).
#' @param outer.col R built-in color to be used for outlier lines (lines outside of 'fromto').
#' @param rev logical: if \code{TRUE} (\code{FALSE} by default), a reversed colorpalette is used.
#' @param alpha alpha value: a two-digit integer between 01 and 99 for color opacity, i.e. appearance of partial or full transparency (usage omitted by default).
#' @param quartiles.col a character vector containing three R built-in colors for quartile lines (c('0.25','0.5','0.75')).
#' @param add.quartiles logical: if \code{TRUE} (by default), lines are plotted corresponding to the quartiles.
#' @author Achim Tresch, Bjoern Schwalb
#' @seealso \code{\link{fusionplot}}, \code{\link{align}}, \code{\link{demotour}}, \code{\link{disco}}, \code{\link{colorpalette}}
#' @examples x = 1:1000/300
#' y = rnorm(1000)+sin(2*x)*3
#'
#' emptyplot(xlim = range(x),ylim = range(y))
#' singlefusionplot(x,y,colpal = "ylgnbu")
#' axis(1)
#' axis(2)
#' box()
#' @keywords cluster
singlefusionplot = function(x,y,fromto = c(0.05,0.95),colpal = "standardheat",simulate = FALSE,daltonize = FALSE,cvd = "p",nrcol = 25,outer.col = "grey",rev = FALSE,alpha = NULL,quartiles.col = c("grey","black","grey"),add.quartiles = TRUE)
{
# kernel function #
kernelf = function(y0,x0,x,y,width=0.1){
wx = 1/sqrt(2*pi)/width*exp(-(x0-x)^2/width^2/2)
res = sum(wx[y<=y0]) / sum(wx)
return(res)
}
# quantile function #
quantf = function(x0,x,y,width=0.1,quantvector=seq(0,1,length=5)){
y0 = seq(min(y),max(y),length=100)
quants = sapply(y0,kernelf,x0,x,y,width)
hilf = approxfun(quants,y0,rule=2)
return(hilf(quantvector))
}
# calculate quantiles #
xseq = seq(min(x),max(x),length=200)
nrquants=2*nrcol
quantvector = seq(fromto[1],fromto[2],length=nrquants)
qline = sapply(xseq,quantf,x,y,width=0.1,quantvector=quantvector)
# provide 'colpal' via colorpalette #
colpal = colorpalette(colpal,nrcol,simulate = simulate,daltonize = daltonize,cvd = cvd,alpha = alpha,rev = rev)
colpal = c(rev(colpal),colpal)
quantvec = seq(0,1,length=nrquants)
for (j in 1:(nrquants - 1)){
polygon(c(xseq,rev(xseq)),c(qline[j,],rev(qline[j+1,])),col = colpal[j],lty = 0)
}
points(x,y,col = outer.col,pch = 19,cex = 0.3)
# wrapper for the lines function #
drawline = function(y,col="black",lwd=1,lty=1){lines(xseq,y,type="l",col=col,lwd=lwd,lty=lty)}
# add lines corresponding to the quartiles #
if (add.quartiles){
quantvector = seq(0.25,0.75,length=3)
qline = sapply(xseq,quantf,x,y,width=0.1,quantvector=quantvector)
drawline(qline[2,],col=quartiles.col[2],lwd=2)
drawline(qline[1,],col=quartiles.col[1],lwd=2)
drawline(qline[3,],col=quartiles.col[3],lwd=2)
}
}
# alias #
LSD.singlefusionplot = singlefusionplot
### fusionplot ###
#' @export
#' @name fusionplot
#' @aliases LSD.fusionplot
#' @title Visualize two-dimensional data clusters
#' @description Depict a numeric matrix or list utilizing the underlying distribution quantiles of one dimension in a color encoded fashion.
#' @param x a numeric vector.
#' @param y a numeric vector.
#' @param label a character vector assigning rows/elements of 'input' to clusters (if specified, multiple clusters can be depicted in different colors and/or subsequent plots).
#' @param main title(s) of the plot, standard graphics parameter.
#' @param xlim x limits, standard graphics parameter.
#' @param ylim y limits, standard graphics parameter.
#' @param fromto a numeric vector containing the range of quantiles (between 0 and 1) to be plotted.
#' @param colpal a character vector containing R built-in color names or a name of a \code{LSD} colorpalette as a character string (see disco() or \code{\link{disco}}).
#' @param simulate logical: if \code{TRUE} (\code{FALSE} by default), a converted colorpalette is used to simulate dichromat vision according to \url{http://www.daltonize.org} (see \code{\link{daltonize}}).
#' @param daltonize logical: if \code{TRUE} (\code{FALSE} by default), a converted colorpalette is used to enhance dichromat vision according to \url{http://www.daltonize.org} (see \code{\link{daltonize}}).
#' @param cvd character string implying the type of color vision deficiency ("p" for protanope, "d" for deuteranope or "t" for tritanope).
#' @param nrcol a non-negative integer specifying the number of colors to be used (defaults to 25, if not specified).
#' @param outer.col R built-in color to be used for outlier lines (lines outside of 'fromto').
#' @param quartiles.col a character vector containing three R built-in colors for quartile lines (c('0.25','0.5','0.75')).
#' @param add.quartiles logical: if \code{TRUE} (by default), lines are plotted corresponding to the quartiles.
#' @param separate if \code{TRUE} (by default), different clusters are depicted in subsequent plots.
#' @param rev logical: if \code{TRUE} (\code{FALSE} by default), a reversed colorpalette is used.
#' @param size logical: if \code{TRUE} (by default), the size of each cluster is added to the title of the respective plot.
#' @param alpha alpha value: a two-digit integer between 01 and 99 for color opacity, i.e. appearance of partial or full transparency (usage omitted by default).
#' @param axes logical: if \code{TRUE} (by default), a box and axes are added to the plot (if \code{FALSE}, custom specification of axes can be achieved via basic R graphics functions).
#' @param ... additional parameters to be passed to points and plot.
#' @author Achim Tresch, Bjoern Schwalb
#' @seealso \code{\link{singlefusionplot}}, \code{\link{align}}, \code{\link{demotour}}, \code{\link{disco}}, \code{\link{colorpalette}}
#' @examples nr = 750
#' x = 1:nr/300
#' y = c(rnorm(nr)+sin(2*x)*3,rnorm(nr)+sin(2*x+pi/2)*3)
#' x = c(x,x)
#'
#' labs = paste("cluster",c(rep(c(1,2),each = nr)))
#' colpals = c("oranges","pubu")
#' qcol = c("transparent","black","transparent")
#' fusionplot(x,y,labs,separate=FALSE,colpal=colpals,alpha=75,quartiles.col = qcol)
#' @keywords cluster
fusionplot = function(x,y,label = NULL,main = NULL,xlim = NULL,ylim = NULL,fromto = c(0.05,0.95),colpal = "standardheat",simulate = FALSE,daltonize = FALSE,cvd = "p",nrcol = 25,outer.col = "lightgrey",quartiles.col = c("grey","black","grey"),add.quartiles = TRUE,separate = TRUE,rev = FALSE,size = TRUE,alpha = NULL,axes = TRUE,...)
{
if (is.null(xlim)){xlim=c(min(x),max(x))}
maxp = xlim[2]
minp = xlim[1]
if (is.null(ylim)){ylim=c(min(y),max(y))}
# one cluster (i.e. one plot), if label = NULL #
if (is.null(label)){
plot.new()
plot.window(xlim = xlim,ylim = ylim,...)
if (size){
main = paste(main," ( #",length(x)," )")
}
title(main)
if (axes){
axis(1,...)
axis(2)
box()
}
singlefusionplot(x=x,y=y,fromto=fromto,colpal=colpal,simulate=simulate,daltonize=daltonize,cvd=cvd,nrcol=nrcol,outer.col=outer.col,add.quartiles=add.quartiles,quartiles.col=quartiles.col,rev=rev,alpha=alpha)
}
# multiple clusters, if label is specified #
if (!is.null(label)) {
clusternames = sort(unique(label))
nrclusters = length(clusternames)
clustersets = split(1:length(x), factor(label))
if (!is.list(colpal)) colpal = as.list(colpal)
if (length(colpal) < nrclusters) colpal = rep(colpal, nrclusters)
# multiple clusters in one plots #
if (separate == FALSE){
plot.new()
plot.window(xlim = xlim,ylim = ylim,...)
if (size){main = paste(main," ( #",length(x)," )")}
title(main)
if (axes){
axis(1,...)
axis(2)
box()
}
}
# multiple clusters in subsequent plots #
if (separate == TRUE) par(mfrow = windowxy(nrclusters))
for (j in seq(clusternames)){
if (separate == TRUE){
if (length(main) == length(clustersets[[j]])) clustermain = main[j] else clustermain = paste(main,clusternames[j])
plot.new()
plot.window(xlim = xlim,ylim = ylim,...)
if (size){clustermain = paste(clustermain," ( #",length(clustersets[[j]])," )")}
title(clustermain)
if (axes){
axis(1,...)
axis(2)
box()
}
}
singlefusionplot(x=x[clustersets[[j]]],y=y[clustersets[[j]]],fromto=fromto,colpal=colpal[[j]],simulate=simulate,daltonize=daltonize,cvd=cvd,nrcol=nrcol,outer.col=outer.col,add.quartiles=add.quartiles,quartiles.col=quartiles.col,rev=rev,alpha=alpha)
}
}
}
# alias #
LSD.fusionplot = fusionplot
|