1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/ideal.R
\name{ideal}
\alias{ideal}
\alias{ideal.}
\alias{ideal_}
\alias{ideal_.}
\alias{print.m2_ideal}
\alias{print.m2_ideal_list}
\alias{radical}
\alias{radical.}
\alias{saturate}
\alias{saturate.}
\alias{quotient}
\alias{quotient.}
\alias{primary_decomposition}
\alias{primary_decomposition.}
\alias{dimension}
\alias{+.m2_ideal}
\alias{*.m2_ideal}
\alias{==.m2_ideal}
\alias{^.m2_ideal}
\title{Create a new ideal in Macaulay2}
\usage{
ideal(..., raw_chars = FALSE, code = FALSE)
ideal.(..., raw_chars = FALSE, code = FALSE)
ideal_(x, raw_chars = FALSE, code = FALSE, ...)
ideal_.(x, raw_chars = FALSE, code = FALSE, ...)
\method{print}{m2_ideal}(x, ...)
\method{print}{m2_ideal_list}(x, ...)
radical(ideal, ring, code = FALSE, ...)
radical.(ideal, ring, code = FALSE, ...)
saturate(I, J, code = FALSE, ...)
saturate.(I, J, code = FALSE, ...)
quotient(I, J, code = FALSE, ...)
quotient.(I, J, code = FALSE, ...)
primary_decomposition(ideal, code = FALSE, ...)
primary_decomposition.(ideal, code = FALSE, ...)
dimension(ideal, code = FALSE, ...)
\method{+}{m2_ideal}(e1, e2)
\method{*}{m2_ideal}(e1, e2)
\method{==}{m2_ideal}(e1, e2)
\method{^}{m2_ideal}(e1, e2)
}
\arguments{
\item{...}{...}
\item{raw_chars}{if \code{TRUE}, the character vector will not be parsed by
\code{\link[=mp]{mp()}}, saving time (default: \code{FALSE}). the down-side is that the
strings must be formated for M2 use directly, as opposed to for \code{\link[=mp]{mp()}}.
(e.g. \code{"x*y+3"} instead of \code{"x y + 3"})}
\item{code}{return only the M2 code? (default: \code{FALSE})}
\item{x}{a listing of polynomials. several formats are accepted, see
examples.}
\item{ideal}{an ideal object of class \code{m2_ideal} or
\code{m2_ideal_pointer}}
\item{ring}{the referent ring in Macaulay2}
\item{I, J}{ideals or objects parsable into ideals}
\item{e1, e2}{ideals for arithmetic}
}
\value{
a reference to a Macaulay2 ideal
}
\description{
Create a new ideal in Macaulay2
}
\examples{
\dontrun{ requires Macaulay2
##### basic usage
########################################
ring("x", "y", coefring = "QQ")
ideal("x + y", "x^2 + y^2")
##### different versions of gb
########################################
# standard evaluation version
poly_chars <- c("x + y", "x^2 + y^2")
ideal_(poly_chars)
# reference nonstandard evaluation version
ideal.("x + y", "x^2 + y^2")
# reference standard evaluation version
ideal_.(poly_chars)
##### different inputs to gb
########################################
ideal_( c("x + y", "x^2 + y^2") )
ideal_(mp(c("x + y", "x^2 + y^2")))
ideal_(list("x + y", "x^2 + y^2") )
##### predicate functions
########################################
I <- ideal ("x + y", "x^2 + y^2")
I. <- ideal.("x + y", "x^2 + y^2")
is.m2_ideal(I)
is.m2_ideal(I.)
is.m2_ideal_pointer(I)
is.m2_ideal_pointer(I.)
##### ideal radical
########################################
I <- ideal("(x^2 + 1)^2 y", "y + 1")
radical(I)
radical.(I)
##### ideal dimension
########################################
I <- ideal_(c("(x^2 + 1)^2 y", "y + 1"))
dimension(I)
# dimension of a line
ring("x", "y", coefring = "QQ")
I <- ideal("y - (x+1)")
dimension(I)
# dimension of a plane
ring("x", "y", "z", coefring = "QQ")
I <- ideal("z - (x+y+1)")
dimension(I)
##### ideal quotients and saturation
########################################
ring("x", "y", "z", coefring = "QQ")
(I <- ideal("x^2", "y^4", "z + 1"))
(J <- ideal("x^6"))
quotient(I, J)
quotient.(I, J)
saturate(I)
saturate.(I)
saturate(I, J)
saturate(I, mp("x"))
saturate(I, "x")
ring("x", "y", coefring = "QQ")
saturate(ideal("x y"), "x^2")
# saturation removes parts of varieties
# solution over R is x = -1, 0, 1
ring("x", coefring = "QQ")
I <- ideal("(x-1) x (x+1)")
saturate(I, "x") # remove x = 0 from solution
ideal("(x-1) (x+1)")
##### primary decomposition
########################################
ring("x", "y", "z", coefring = "QQ")
I <- ideal("(x^2 + 1) (x^2 + 2)", "y + 1")
primary_decomposition(I)
primary_decomposition.(I)
I <- ideal("x (x + 1)", "y")
primary_decomposition(I)
# variety = z axis union x-y plane
(I <- ideal("x z", "y z"))
dimension(I) # = max dimension of irreducible components
(Is <- primary_decomposition(I))
dimension(Is)
##### ideal arithmetic
########################################
ring("x", "y", "z", coefring = "RR")
# sums (cox et al., 184)
(I <- ideal("x^2 + y"))
(J <- ideal("z"))
I + J
# products (cox et al., 185)
(I <- ideal("x", "y"))
(J <- ideal("z"))
I * J
# equality
(I <- ideal("x", "y"))
(J <- ideal("z"))
I == J
I == I
# powers
(I <- ideal("x", "y"))
I^3
}
}
|