1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
\name{sun-methods}
\docType{methods}
\alias{crepuscule}
\alias{sunriset}
\alias{solarnoon}
\alias{solarpos}
\alias{crepuscule-methods}
\alias{crepuscule,SpatialPoints,POSIXct-method}
\alias{crepuscule,matrix,POSIXct-method}
\alias{solarnoon-methods}
\alias{solarnoon,SpatialPoints,POSIXct-method}
\alias{solarnoon,matrix,POSIXct-method}
\alias{solarpos-methods}
\alias{solarpos,SpatialPoints,POSIXct-method}
\alias{solarpos,matrix,POSIXct-method}
\alias{sunriset-methods}
\alias{sunriset,SpatialPoints,POSIXct-method}
\alias{sunriset,matrix,POSIXct-method}
\title{Methods for sun ephemerides calculations}
\description{Functions for calculating sunrise, sunset, and times of
dawn and dusk, with flexibility for the various formal definitions.
They use algorithms provided by the National Oceanic & Atmospheric
Administration (NOAA).}
\usage{
\S4method{crepuscule}{SpatialPoints,POSIXct}(crds, dateTime, solarDep, direction=c("dawn", "dusk"),
POSIXct.out=FALSE)
\S4method{crepuscule}{matrix,POSIXct}(crds, dateTime,
proj4string=CRS("+proj=longlat +datum=WGS84"), solarDep,
direction=c("dawn", "dusk"), POSIXct.out=FALSE)
\S4method{sunriset}{SpatialPoints,POSIXct}(crds, dateTime, direction=c("sunrise", "sunset"),
POSIXct.out=FALSE)
\S4method{sunriset}{matrix,POSIXct}(crds, dateTime,
proj4string=CRS("+proj=longlat +datum=WGS84"),
direction=c("sunrise", "sunset"), POSIXct.out=FALSE)
\S4method{solarnoon}{SpatialPoints,POSIXct}(crds, dateTime, POSIXct.out=FALSE)
\S4method{solarnoon}{matrix,POSIXct}(crds, dateTime, proj4string=CRS("+proj=longlat +datum=WGS84"),
POSIXct.out=FALSE)
\S4method{solarpos}{SpatialPoints,POSIXct}(crds, dateTime, ...)
\S4method{solarpos}{matrix,POSIXct}(crds, dateTime, proj4string=CRS("+proj=longlat +datum=WGS84"), ...)
}
\arguments{
\item{crds}{a \code{SpatialPoints} or \code{matrix} object, containing
x and y coordinates (in that order).}
\item{dateTime}{a POSIXct object with the date and time associated to
calculate ephemerides for points given in crds.}
\item{solarDep}{numeric vector with the angle of the sun below the
horizon in degrees.}
\item{direction}{one of "dawn", "dusk", "sunrise", or "sunset",
indicating which ephemerides should be calculated.}
\item{POSIXct.out}{logical indicating whether POSIXct output should be
included.}
\item{proj4string}{string with valid projection string describing the
projection of data in \code{crds}.}
\item{\dots}{other arguments passed through.}
}
\details{NOAA used the reference below to develop their Sunrise/Sunset
\url{http://www.srrb.noaa.gov/highlights/sunrise/sunrise.html} and Solar
Position
\url{http://www.srrb.noaa.gov/highlights/sunrise/azel.html}
Calculators. The algorithms include corrections for atmospheric
refraction effects.
Input can consist of one location and at least one POSIXct times, or one
POSIXct time and at least one location. \var{solarDep} is recycled as
needed.
Do not use the daylight savings time zone string for supplying
\var{dateTime}, as many OS will not be able to properly set it to
standard time when needed.}
\section{Warning}{Compared to NOAA's original Javascript code, the
sunrise and sunset estimates from this translation may differ by +/- 1
minute, based on tests using selected locations spanning the globe.
This translation does not include calculation of prior or next
sunrises/sunsets for locations above the Arctic Circle or below the
Antarctic Circle.}
\value{\code{crepuscule}, \code{sunriset}, and \code{solarnoon} return a
numeric vector with the time of day at which the event occurs,
expressed as a fraction, if POSIXct.out is FALSE; otherwise they
return a data frame with both the fraction and the corresponding
POSIXct date and time. \code{solarpos} returns a matrix with the solar
azimuth (in degrees from North), and elevation.}
\note{NOAA notes that \dQuote{for latitudes greater than 72 degrees N
and S, calculations are accurate to within 10 minutes. For latitudes
less than +/- 72 degrees accuracy is approximately one minute.}}
\references{
Meeus, J. (1991) Astronomical Algorithms. Willmann-Bell, Inc.
}
\author{Sebastian P. Luque \email{spluque@gmail.com}, translated from
Greg Pelletier's \email{gpel461@ecy.wa.gov} VBA code (available from
\url{http://www.ecy.wa.gov/programs/eap/models.html}), who in turn
translated it from original Javascript code by NOAA (see Details).
Roger Bivand \email{roger.bivand@nhh.no} adapted the code to work with
\pkg{sp} classes.}
\examples{
## Location of Helsinki, Finland, in decimal degrees,
## as listed in NOAA's website
hels <- matrix(c(24.97, 60.17), nrow=1)
Hels <- SpatialPoints(hels, proj4string=CRS("+proj=longlat +datum=WGS84"))
d041224 <- as.POSIXct("2004-12-24", tz="EET")
## Astronomical dawn
crepuscule(hels, d041224, solarDep=18, direction="dawn", POSIXct.out=TRUE)
crepuscule(Hels, d041224, solarDep=18, direction="dawn", POSIXct.out=TRUE)
## Nautical dawn
crepuscule(hels, d041224, solarDep=12, direction="dawn", POSIXct.out=TRUE)
crepuscule(Hels, d041224, solarDep=12, direction="dawn", POSIXct.out=TRUE)
## Civil dawn
crepuscule(hels, d041224, solarDep=6, direction="dawn", POSIXct.out=TRUE)
crepuscule(Hels, d041224, solarDep=6, direction="dawn", POSIXct.out=TRUE)
solarnoon(hels, d041224, POSIXct.out=TRUE)
solarnoon(Hels, d041224, POSIXct.out=TRUE)
solarpos(hels, as.POSIXct(Sys.time(), tz="EET"))
solarpos(Hels, as.POSIXct(Sys.time(), tz="EET"))
sunriset(hels, d041224, direction="sunrise", POSIXct.out=TRUE)
sunriset(Hels, d041224, direction="sunrise", POSIXct.out=TRUE)
## Using a sequence of dates
Hels_seq <- seq(from=d041224, length.out=365, by="days")
up <- sunriset(Hels, Hels_seq, direction="sunrise", POSIXct.out=TRUE)
down <- sunriset(Hels, Hels_seq, direction="sunset", POSIXct.out=TRUE)
day_length <- down$time - up$time
plot(Hels_seq, day_length, type="l")
## Using a grid of spatial points for the same point in time
grd <- GridTopology(c(-179,-89), c(1,1), c(359,179))
SP <- SpatialPoints(coordinates(grd),
proj4string=CRS("+proj=longlat +datum=WGS84"))
wint <- as.POSIXct("2004-12-21", tz="GMT")
win <- crepuscule(SP, wint, solarDep=6, direction="dawn")
SPDF <- SpatialGridDataFrame(grd,
proj4string=CRS("+proj=longlat +datum=WGS84"),
data=data.frame(winter=win))
image(SPDF, axes=TRUE, col=cm.colors(40))
}
\keyword{methods}
\keyword{manip}
\keyword{utilities}
|