File: sun-methods.Rd

package info (click to toggle)
r-cran-maptools 1%3A0.8-30-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 2,896 kB
  • ctags: 230
  • sloc: ansic: 3,007; makefile: 3
file content (185 lines) | stat: -rw-r--r-- 6,589 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
\name{sun-methods}
\docType{methods}

\alias{crepuscule}
\alias{sunriset}
\alias{solarnoon}
\alias{solarpos}

\alias{crepuscule-methods}
\alias{crepuscule,SpatialPoints,POSIXct-method}
\alias{crepuscule,matrix,POSIXct-method}
\alias{solarnoon-methods}
\alias{solarnoon,SpatialPoints,POSIXct-method}
\alias{solarnoon,matrix,POSIXct-method}
\alias{solarpos-methods}
\alias{solarpos,SpatialPoints,POSIXct-method}
\alias{solarpos,matrix,POSIXct-method}
\alias{sunriset-methods}
\alias{sunriset,SpatialPoints,POSIXct-method}
\alias{sunriset,matrix,POSIXct-method}


\title{Methods for sun ephemerides calculations}


\description{Functions for calculating sunrise, sunset, and times of
  dawn and dusk, with flexibility for the various formal definitions.
  They use algorithms provided by the National Oceanic & Atmospheric
  Administration (NOAA).}


\usage{

\S4method{crepuscule}{SpatialPoints,POSIXct}(crds, dateTime, solarDep, direction=c("dawn", "dusk"),
           POSIXct.out=FALSE)
\S4method{crepuscule}{matrix,POSIXct}(crds, dateTime,
           proj4string=CRS("+proj=longlat +datum=WGS84"), solarDep,
           direction=c("dawn", "dusk"), POSIXct.out=FALSE)
\S4method{sunriset}{SpatialPoints,POSIXct}(crds, dateTime, direction=c("sunrise", "sunset"),
         POSIXct.out=FALSE)
\S4method{sunriset}{matrix,POSIXct}(crds, dateTime,
         proj4string=CRS("+proj=longlat +datum=WGS84"),
         direction=c("sunrise", "sunset"), POSIXct.out=FALSE)
\S4method{solarnoon}{SpatialPoints,POSIXct}(crds, dateTime, POSIXct.out=FALSE)
\S4method{solarnoon}{matrix,POSIXct}(crds, dateTime,
          proj4string=CRS("+proj=longlat +datum=WGS84"),
          POSIXct.out=FALSE)
\S4method{solarpos}{SpatialPoints,POSIXct}(crds, dateTime, ...)
\S4method{solarpos}{matrix,POSIXct}(crds, dateTime,
         proj4string=CRS("+proj=longlat +datum=WGS84"), ...)

}


\arguments{

  \item{crds}{a \code{SpatialPoints} or \code{matrix} object, containing
    x and y coordinates (in that order).}

  \item{dateTime}{a POSIXct object with the date and time associated to
    calculate ephemerides for points given in crds.}

  \item{solarDep}{numeric vector with the angle of the sun below the
    horizon in degrees.}

  \item{direction}{one of "dawn", "dusk", "sunrise", or "sunset",
    indicating which ephemerides should be calculated.}

  \item{POSIXct.out}{logical indicating whether POSIXct output should be
    included.}

  \item{proj4string}{string with valid projection string describing the
    projection of data in \code{crds}.}

  \item{\dots}{other arguments passed through.}

}


\details{

  NOAA used the reference below to develop their Sunrise/Sunset

  \url{http://www.srrb.noaa.gov/highlights/sunrise/sunrise.html} and Solar
  Position 

  \url{http://www.srrb.noaa.gov/highlights/sunrise/azel.html}
  Calculators.  The algorithms include corrections for atmospheric
  refraction effects.

  Input can consist of one location and at least one POSIXct times, or one
  POSIXct time and at least one location.  \var{solarDep} is recycled as
  needed.

  Do not use the daylight savings time zone string for supplying
  \var{dateTime}, as many OS will not be able to properly set it to
  standard time when needed.

}


\section{Warning}{Compared to NOAA's original Javascript code, the
  sunrise and sunset estimates from this translation may differ by +/- 1
  minute, based on tests using selected locations spanning the globe.
  This translation does not include calculation of prior or next
  sunrises/sunsets for locations above the Arctic Circle or below the
  Antarctic Circle.}


\value{

  \code{crepuscule}, \code{sunriset}, and \code{solarnoon} return a
  numeric vector with the time of day at which the event occurs,
  expressed as a fraction, if POSIXct.out is FALSE; otherwise they
  return a data frame with both the fraction and the corresponding
  POSIXct date and time.

  \code{solarpos} returns a matrix with the solar azimuth (in degrees
  from North), and elevation.

}


\note{NOAA notes that \dQuote{for latitudes greater than 72 degrees N
    and S, calculations are accurate to within 10 minutes.  For
    latitudes less than +/- 72 degrees accuracy is approximately one
    minute.}}


\references{
  Meeus, J.  (1991)  Astronomical Algorithms.  Willmann-Bell, Inc.
}

\author{Sebastian P. Luque \email{spluque@gmail.com}, translated from
  Greg Pelletier's \email{gpel461@ecy.wa.gov} VBA code (available from
  \url{http://www.ecy.wa.gov/programs/eap/models.html}), who in turn
  translated it from original Javascript code by NOAA (see Details).
  Roger Bivand \email{roger.bivand@nhh.no} adapted the code to work with
  \pkg{sp} classes.}

\examples{
## Location of Helsinki, Finland, in decimal degrees,
## as listed in NOAA's website
hels <- matrix(c(24.97, 60.17), nrow=1)
Hels <- SpatialPoints(hels, proj4string=CRS("+proj=longlat +datum=WGS84"))
d041224 <- as.POSIXct("2004-12-24", tz="EET")
## Astronomical dawn
crepuscule(hels, d041224, solarDep=18, direction="dawn", POSIXct.out=TRUE)
crepuscule(Hels, d041224, solarDep=18, direction="dawn", POSIXct.out=TRUE)
## Nautical dawn
crepuscule(hels, d041224, solarDep=12, direction="dawn", POSIXct.out=TRUE)
crepuscule(Hels, d041224, solarDep=12, direction="dawn", POSIXct.out=TRUE)
## Civil dawn
crepuscule(hels, d041224, solarDep=6, direction="dawn", POSIXct.out=TRUE)
crepuscule(Hels, d041224, solarDep=6, direction="dawn", POSIXct.out=TRUE)
solarnoon(hels, d041224, POSIXct.out=TRUE)
solarnoon(Hels, d041224, POSIXct.out=TRUE)
solarpos(hels, as.POSIXct(Sys.time(), tz="EET"))
solarpos(Hels, as.POSIXct(Sys.time(), tz="EET"))
sunriset(hels, d041224, direction="sunrise", POSIXct.out=TRUE)
sunriset(Hels, d041224, direction="sunrise", POSIXct.out=TRUE)
## Using a sequence of dates
Hels_seq <- seq(from=d041224, length.out=365, by="days")
up <- sunriset(Hels, Hels_seq, direction="sunrise", POSIXct.out=TRUE)
down <- sunriset(Hels, Hels_seq, direction="sunset", POSIXct.out=TRUE)
day_length <- down$time - up$time
plot(Hels_seq, day_length, type="l")

## Using a grid of spatial points for the same point in time
\dontrun{
grd <- GridTopology(c(-179,-89), c(1,1), c(359,179))
SP <- SpatialPoints(coordinates(grd),
                    proj4string=CRS("+proj=longlat +datum=WGS84"))
wint <- as.POSIXct("2004-12-21", tz="GMT")
win <- crepuscule(SP, wint, solarDep=6, direction="dawn")
SPDF <- SpatialGridDataFrame(grd,
 proj4string=CRS("+proj=longlat +datum=WGS84"),
 data=data.frame(winter=win))
image(SPDF, axes=TRUE, col=cm.colors(40))
}
}

\keyword{methods}
\keyword{manip}
\keyword{utilities}