1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
pointLabel <- function(x, y = NULL, labels = seq(along = x), cex = 1,
method = c("SANN", "GA"),
allowSmallOverlap = FALSE,
trace = FALSE,
doPlot = TRUE,
...)
{
.Deprecated(new="pointLabel", package="car", old="pointLabel",
msg="Function moved to the car package because maptools is retiring in 2023")
if (!missing(y) && (is.character(y) || is.expression(y))) {
labels <- y
y <- NULL
}
labels <- as.graphicsAnnot(labels)
boundary <- par()$usr
xyAspect <- par()$pin[1] / par()$pin[2] # width / height
# scale to a unit area from 0 to 1
toUnityCoords <- function(xy) {
list(x = (xy$x - boundary[1]) / (boundary[2] - boundary[1]) * xyAspect,
y = (xy$y - boundary[3]) / (boundary[4] - boundary[3]) / xyAspect)
}
toUserCoords <- function(xy) {
list(x = boundary[1] + xy$x / xyAspect * (boundary[2] - boundary[1]),
y = boundary[3] + xy$y * xyAspect * (boundary[4] - boundary[3]))
}
z <- xy.coords(x, y, recycle = TRUE)
z <- toUnityCoords(z)
x <- z$x
y <- z$y
if (length(labels) < length(x))
labels <- rep(labels, length(x))
method <- match.arg(method)
if (allowSmallOverlap)
nudgeFactor <- 0.02
n_labels <- length(x)
# There are eight possible alignment codes, corresponding to the
# corners and side mid-points of the rectangle
# Codes are 1:8
# Code 7 (top right) is the most preferred
width <- (strwidth(labels, units = "figure", cex = cex) + 0.015) * xyAspect
height <- (strheight(labels, units = "figure", cex = cex) + 0.015) / xyAspect
gen_offset <- function(code)
c(-1, -1, -1, 0, 0, 1, 1, 1)[code] * (width/2) +
1i * c(-1, 0, 1, -1, 1, -1, 0, 1)[code] * (height/2)
# Finds intersection area of two rectangles
rect_intersect <- function(xy1, offset1, xy2, offset2) {
w <- pmin(Re(xy1+offset1/2), Re(xy2+offset2/2)) - pmax(Re(xy1-offset1/2), Re(xy2-offset2/2))
h <- pmin(Im(xy1+offset1/2), Im(xy2+offset2/2)) - pmax(Im(xy1-offset1/2), Im(xy2-offset2/2))
w[w <= 0] <- 0
h[h <= 0] <- 0
w*h
}
nudge <- function(offset) {
# Nudge the labels slightly if they overlap:
doesIntersect <- rect_intersect(xy[rectidx1] + offset[rectidx1], rectv[rectidx1],
xy[rectidx2] + offset[rectidx2], rectv[rectidx2]) > 0
pyth <- abs(xy[rectidx1] + offset[rectidx1] - xy[rectidx2] - offset[rectidx2]) / nudgeFactor
eps <- 1.0e-10
for (i in which(doesIntersect & pyth > eps)) {
idx1 <- rectidx1[i]
idx2 <- rectidx2[i]
vect <- (xy[idx1] + offset[idx1] - xy[idx2] - offset[idx2]) / pyth[idx1]
offset[idx1] <- offset[idx1] + vect
offset[idx2] <- offset[idx2] - vect
}
offset
}
objective <- function(gene) {
offset <- gen_offset(gene)
# Allow for "bending" the labels a bit
if (allowSmallOverlap) offset <- nudge(offset)
if (!is.null(rectidx1))
area <- sum(rect_intersect(xy[rectidx1] + offset[rectidx1], rectv[rectidx1],
xy[rectidx2] + offset[rectidx2], rectv[rectidx2]))
else
area <- 0
# Penalize labels which go outside the image area
# Count points outside of the image
n_outside <- sum(Re(xy + offset - rectv/2) < 0 | Re(xy + offset + rectv/2) > xyAspect |
Im(xy + offset - rectv/2) < 0 | Im(xy + offset + rectv/2) > 1/xyAspect)
res <- 1000 * area + n_outside
#cat(n_outside,"\n")
res
}
# Make a list of label rectangles in their reference positions,
# centered over the map feature; the real labels are displaced
# from these positions so as not to overlap
# Note that some labels can be bigger than others
xy <- x + 1i * y
rectv <- width + 1i * height
rectidx1 <- rectidx2 <- array(0, (length(x)^2 - length(x)) / 2)
k <- 0
for (i in 1:length(x))
for (j in seq(len=(i-1))) {
k <- k + 1
rectidx1[k] <- i
rectidx2[k] <- j
}
canIntersect <- rect_intersect(xy[rectidx1], 2 * rectv[rectidx1],
xy[rectidx2], 2 * rectv[rectidx2]) > 0
rectidx1 <- rectidx1[canIntersect]
rectidx2 <- rectidx2[canIntersect]
if (trace) cat("possible intersects =", length(rectidx1), "\n")
if (trace) cat("portion covered =", sum(rect_intersect(xy, rectv,xy,rectv)),"\n")
GA <- function() {
# Make some starting genes
n_startgenes <- 1000 # size of starting gene pool
n_bestgenes <- 30 # genes selected for cross-breeding
prob <- 0.2
# Mutation function: O(n^2) time
mutate <- function(gene) {
offset <- gen_offset(gene)
# Directed mutation where two rectangles intersect
doesIntersect <- rect_intersect(xy[rectidx1] + offset[rectidx1], rectv[rectidx1],
xy[rectidx2] + offset[rectidx2], rectv[rectidx2]) > 0
for (i in which(doesIntersect)) {
gene[rectidx1[i]] <- sample(1:8, 1)
}
# And a bit of random mutation, too
for (i in seq(along=gene))
if (runif(1) <= prob)
gene[i] <- sample(1:8, 1)
gene
}
# Crossbreed two genes, then mutate at "hot spots" where intersections remain
crossbreed <- function(g1, g2)
ifelse(sample(c(0,1), length(g1), replace = TRUE) > .5, g1, g2)
genes <- matrix(sample(1:8, n_labels * n_startgenes, replace = TRUE), n_startgenes, n_labels)
for (i in 1:10) {
scores <- array(0., NROW(genes))
for (j in 1:NROW(genes))
scores[j] <- objective(genes[j,])
rankings <- order(scores)
genes <- genes[rankings,]
bestgenes <- genes[1:n_bestgenes,]
bestscore <- scores[rankings][1]
if (bestscore == 0) {
if (trace) cat("overlap area =", bestscore, "\n")
break
}
# At each stage, we breed the best genes with one another
genes <- matrix(0, n_bestgenes^2, n_labels)
for (j in 1:n_bestgenes)
for (k in 1:n_bestgenes)
genes[n_bestgenes*(j-1) + k,] <- mutate(crossbreed(bestgenes[j,], bestgenes[k,]))
genes <- rbind(bestgenes, genes)
if (trace) cat("overlap area =", bestscore, "\n")
}
nx <- Re(xy + gen_offset(bestgenes[1,]))
ny <- Im(xy + gen_offset(bestgenes[1,]))
list(x = nx, y = ny)
}
SANN <- function() {
# Make some starting "genes"
#gene <- sample(1:8, n_labels, repl = TRUE)
gene <- rep(8, n_labels)
score <- objective(gene)
bestgene <- gene
bestscore <- score
T <- 2.5
for (i in 1:50) {
k <- 1
for (j in 1:50) {
newgene <- gene
newgene[sample(1:n_labels, 1)] <- sample(1:8,1)
newscore <- objective(newgene)
if (newscore <= score || runif(1) < exp((score - newscore) / T)) {
# keep the new set if it has the same or better score or
# if it's worse randomly based on the annealing criteria
k <- k + 1
score <- newscore
gene <- newgene
}
if (score <= bestscore) {
bestscore <- score
bestgene <- gene
}
if (bestscore == 0 || k == 10) break
}
if (bestscore == 0) break
if (trace) cat("overlap area =", bestscore, "\n")
T <- 0.9 * T
}
if (trace) cat("overlap area =", bestscore, "\n")
nx <- Re(xy + gen_offset(bestgene))
ny <- Im(xy + gen_offset(bestgene))
list(x = nx, y = ny)
}
if (method == "SANN")
xy <- SANN()
else
xy <- GA()
xy <- toUserCoords(xy)
if (doPlot)
text(xy, labels, cex = cex, ...)
invisible(xy)
}
|