File: data.R

package info (click to toggle)
r-cran-markovchain 0.8.5-4-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 2,060 kB
  • sloc: cpp: 2,854; sh: 13; makefile: 2
file content (175 lines) | stat: -rw-r--r-- 5,647 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#' @name sales
#' 
#' @title Sales Demand Sequences
#' 
#' @description Sales demand sequences of five products (A, B, C, D, E).
#'              Each row corresponds to a sequence. First row corresponds to Sequence A, 
#'              Second row to Sequence B and so on.
#' 
#' @usage data("sales")
#' 
#' @details The example can be used to fit High order multivariate
#'          markov chain.
#' 
#' @examples 
#' data("sales")
#' # fitHighOrderMultivarMC(seqMat = sales, order = 2, Norm = 2)
#' 
"sales"
#' @name blanden
#' 
#' @title Mobility between income quartiles
#' 
#' @description This table show mobility between income quartiles for father and sons for the 1970 cohort born
#' 
#' @usage data(blanden)
#' 
#' @details The rows represent fathers' income quartile when the son is aged 16, whilst the columns represent sons' income quartiles when he is aged 30 (in 2000).
#' 
#' @source Personal reworking
#' 
#' @references Jo Blanden, Paul Gregg and Stephen Machin, Intergenerational Mobility in Europe and North America, Center for Economic Performances (2005)
#' 
#' @examples
#' data(blanden)
#' mobilityMc<-as(blanden, "markovchain")
"blanden"
#' @name craigsendi
#' 
#' @title CD4 cells counts on HIV Infects between zero and six month 
#' 
#' @description This is the table shown in Craig and Sendi paper showing zero and six month CD4 cells count in six brakets
#' 
#' @usage data(craigsendi)
#' 
#' @format 
#' The format is:
#' table [1:3, 1:3] 682 154 19 33 64 19 25 47 43
#' - attr(*, "dimnames")=List of 2
#'   ..$ : chr [1:3] "0-49" "50-74" "75-UP"
#'   ..$ : chr [1:3] "0-49" "50-74" "75-UP"
#'   
#' @details Rows represent counts at the beginning, cols represent counts after six months.
#' 
#' @source Estimation of the transition matrix of a discrete time Markov chain, Bruce A. Craig and Peter P. Sendi, Health Economics 11, 2002.
#' 
#' @references see source
#' 
#' @examples 
#' data(craigsendi)
#' csMc<-as(craigsendi, "markovchain")
#' steadyStates(csMc)
"craigsendi"
#' @name holson
#' 
#' @title Holson data set
#' 
#' @description A data set containing 1000 life histories trajectories and a categorical status (1,2,3) observed on eleven evenly spaced steps.
#' 
#' @usage data(holson)
#' 
#' @format 
#' A data frame with 1000 observations on the following 12 variables.
#' \describe{
#' \item{\code{id}}{unique id}
#' \item{\code{time1}}{observed status at i-th time}
#' \item{\code{time2}}{observed status at i-th time}
#' \item{\code{time3}}{observed status at i-th time}
#' \item{\code{time4}}{observed status at i-th time}
#' \item{\code{time5}}{observed status at i-th time}
#' \item{\code{time6}}{observed status at i-th time}
#' \item{\code{time7}}{observed status at i-th time}
#' \item{\code{time8}}{observed status at i-th time}
#' \item{\code{time9}}{observed status at i-th time}
#' \item{\code{time10}}{observed status at i-th time}
#' \item{\code{time11}}{observed status at i-th time}
#' }
#' 
#' @details The example can be used to fit a \code{markovchain} or a \code{markovchainList} object.
#' 
#' @source Private communications
#' 
#' @references Private communications
#' 
#' @examples 
#' data(holson)
#' head(holson)
"holson"
#' @name kullback
#' 
#' @title Example from Kullback and Kupperman Tests for Contingency Tables
#' 
#' @format A list containing two 6x6 non - negative integer matrices
#' 
#' @usage data(kullback)
#' 
#' @description A list of two matrices representing raw transitions between two states
"kullback"
#' @name rain
#' 
#' @title Alofi island daily rainfall
#' 
#' @description Rainfall measured in Alofi Island
#' 
#' @usage data(rain)
#' 
#' @format 
#' A data frame with 1096 observations on the following 2 variables.
#' \describe{
#'   \item{\code{V1}}{a numeric vector, showing original coding}
#'   \item{\code{rain}}{a character vector, showing daily rainfall millilitres brackets}
#' }
#' 
#' @source Avery Henderson
#' 
#' @references Avery Henderson, Fitting markov chain models on discrete time series such as DNA sequences
#' 
#' @examples 
#' data(rain)
#' rainMc<-markovchainFit(data=rain$rain)
"rain"
#' @name preproglucacon
#' 
#' @title Preprogluccacon DNA protein bases sequences
#' 
#' @description Sequence of bases for preproglucacon DNA protein
#' 
#' @usage data(preproglucacon)
#' 
#' @format 
#' A data frame with 1572 observations on the following 2 variables.
#' \describe{
#'   \item{\code{V1}}{a numeric vector, showing original coding}
#'   \item{\code{preproglucacon}}{a character vector, showing initial of DNA bases (Adenine, Cytosine, Guanine, Thymine)}
#' }
#' 
#' @source Avery Henderson
#' 
#' @references Averuy Henderson, Fitting markov chain models on discrete time series such as DNA sequences
#' 
#' @examples 
#' data(preproglucacon)
#' preproglucaconMc<-markovchainFit(data=preproglucacon$preproglucacon)
"preproglucacon"
#' @name tm_abs
#' 
#' @title Single Year Corporate Credit Rating Transititions
#' 
#' @description Matrix of Standard and Poor's Global Corporate Rating Transition Frequencies 2000 (NR Removed)
#' 
#' @usage data(tm_abs)
#' 
#' @format 
#' The format is:
#' num [1:8, 1:8] 17 2 0 0 0 0 0 0 1 455 ...
#' - attr(*, "dimnames")=List of 2
#' ..$ : chr [1:8] "AAA" "AA" "A" "BBB" ...
#' ..$ : chr [1:8] "AAA" "AA" "A" "BBB" ...
#' 
#' @references 
#' European Securities and Markets Authority, 2016 
#' https://cerep.esma.europa.eu/cerep-web/statistics/transitionMatrice.xhtml
#' 
#' @examples 
#' data(tm_abs)
"tm_abs"