File: stepAIC.R

package info (click to toggle)
r-cran-mass 7.3-51.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 2,148 kB
  • sloc: ansic: 664; makefile: 2
file content (229 lines) | stat: -rw-r--r-- 8,630 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# file MASS/R/stepAIC.R
# copyright (C) 1994-2007 W. N. Venables and B. D. Ripley
#
#  This program is free software; you can redistribute it and/or modify
#  it under the terms of the GNU General Public License as published by
#  the Free Software Foundation; either version 2 or 3 of the License
#  (at your option).
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  A copy of the GNU General Public License is available at
#  http://www.r-project.org/Licenses/
#
stepAIC <-
  function(object, scope, scale = 0,
           direction = c("both", "backward", "forward"),
           trace = 1, keep = NULL, steps = 1000, use.start = FALSE, k = 2, ...)
{
    mydeviance <- function(x, ...)
    {
        dev <- deviance(x)
        if(!is.null(dev)) dev else extractAIC(x, k=0)[2L]
    }

    cut.string <- function(string)
    {
        if(length(string) > 1L)
            string[-1L] <- paste("\n", string[-1L], sep = "")
        string
    }

    re.arrange <- function(keep)
    {
        namr <- names(k1 <- keep[[1L]])
        namc <- names(keep)
        nc <- length(keep)
        nr <- length(k1)
        array(unlist(keep, recursive = FALSE), c(nr, nc), list(namr, namc))
    }

    step.results <- function(models, fit, object, usingCp=FALSE)
    {
        change <- sapply(models, "[[", "change")
        rd <- sapply(models, "[[", "deviance")
        dd <- c(NA, abs(diff(rd)))
        rdf <- sapply(models, "[[", "df.resid")
        ddf <- c(NA, abs(diff(rdf)))
        AIC <- sapply(models, "[[", "AIC")
        heading <- c("Stepwise Model Path \nAnalysis of Deviance Table",
                     "\nInitial Model:", deparse(formula(object)),
                     "\nFinal Model:", deparse(formula(fit)),
                     "\n")
        aod <-
            if(usingCp)
                data.frame(Step = change, Df = ddf, Deviance = dd,
                           "Resid. Df" = rdf, "Resid. Dev" = rd,
                           Cp = AIC, check.names = FALSE)
            else data.frame(Step = change, Df = ddf, Deviance = dd,
                            "Resid. Df" = rdf, "Resid. Dev" = rd,
                            AIC = AIC, check.names = FALSE)
        attr(aod, "heading") <- heading
        class(aod) <- c("Anova", "data.frame")
        fit$anova <- aod
        fit
    }

    Terms <- terms(object)
    object$formula <- Terms
    if(inherits(object, "lme")) object$call$fixed <- Terms
    else if(inherits(object, "gls")) object$call$model <- Terms
    else object$call$formula <- Terms
    if(use.start) warning("'use.start' cannot be used with R's version of 'glm'")
    md <- missing(direction)
    direction <- match.arg(direction)
    backward <- direction == "both" | direction == "backward"
    forward <- direction == "both" | direction == "forward"
    if(missing(scope)) {
	fdrop <- numeric()
        fadd <- attr(Terms, "factors")
        if(md) forward <- FALSE
    } else {
        if(is.list(scope)) {
            fdrop <- if(!is.null(fdrop <- scope$lower))
                attr(terms(update.formula(object, fdrop)), "factors")
            else numeric()
            fadd <- if(!is.null(fadd <- scope$upper))
                attr(terms(update.formula(object, fadd)), "factors")
        } else {
            fadd <- if(!is.null(fadd <- scope))
                attr(terms(update.formula(object, scope)), "factors")
            fdrop <- numeric()
        }
    }
    models <- vector("list", steps)
    if(!is.null(keep)) keep.list <- vector("list", steps)
    n <- nobs(object, use.fallback = TRUE)  # might be NA
    fit <- object
    bAIC <- extractAIC(fit, scale, k = k, ...)
    edf <- bAIC[1L]
    bAIC <- bAIC[2L]
    if(is.na(bAIC))
        stop("AIC is not defined for this model, so 'stepAIC' cannot proceed")
    if(bAIC == -Inf)
        stop("AIC is -infinity for this model, so 'stepAIC' cannot proceed")
   nm <- 1
    Terms <- terms(fit)
    if(trace) {
        cat("Start:  AIC=", format(round(bAIC, 2)), "\n",
            cut.string(deparse(formula(fit))), "\n\n", sep='')
	utils::flush.console()
    }
    models[[nm]] <- list(deviance = mydeviance(fit), df.resid = n - edf,
                         change = "", AIC = bAIC)
    if(!is.null(keep)) keep.list[[nm]] <- keep(fit, bAIC)
    usingCp <- FALSE
    while(steps > 0) {
        steps <- steps - 1
        AIC <- bAIC
        ffac <- attr(Terms, "factors")
        ## don't drop strata terms
        if(!is.null(sp <- attr(Terms, "specials")) &&
           !is.null(st <- sp$strata)) ffac <- ffac[-st,]
        scope <- factor.scope(ffac, list(add = fadd, drop = fdrop))
        aod <- NULL
        change <- NULL
        if(backward && length(scope$drop)) {
            aod <- dropterm(fit, scope$drop, scale = scale,
                            trace = max(0, trace - 1), k = k, ...)
            rn <- row.names(aod)
            row.names(aod) <- c(rn[1L], paste("-", rn[-1L], sep=" "))
            ## drop all zero df terms first.
            if(any(aod$Df == 0, na.rm=TRUE)) {
                zdf <- aod$Df == 0 & !is.na(aod$Df)
                nc <- match(c("Cp", "AIC"), names(aod))
                nc <- nc[!is.na(nc)][1L]
                ch <- abs(aod[zdf, nc] - aod[1, nc]) > 0.01
                if(any(is.finite(ch) & ch)) {
                    warning("0 df terms are changing AIC")
                    zdf <- zdf[!ch]
                }
                ## drop zero df terms first: one at time since they
                ## may mask each other
                if(length(zdf) > 0L)
                    change <- rev(rownames(aod)[zdf])[1L]
            }
        }
        if(is.null(change)) {
            if(forward && length(scope$add)) {
                aodf <- addterm(fit, scope$add, scale = scale,
                                trace = max(0, trace - 1), k = k, ...)
                rn <- row.names(aodf)
                row.names(aodf) <- c(rn[1L], paste("+", rn[-1L], sep=" "))
                aod <-
                    if(is.null(aod)) aodf
                    else rbind(aod, aodf[-1, , drop=FALSE])
            }
            attr(aod, "heading") <- NULL
            if(is.null(aod) || ncol(aod) == 0) break
            ## need to remove any terms with zero df from consideration
            nzdf <- if(!is.null(aod$Df)) aod$Df != 0 | is.na(aod$Df)
            aod <- aod[nzdf, ]
            if(is.null(aod) || ncol(aod) == 0) break
            nc <- match(c("Cp", "AIC"), names(aod))
            nc <- nc[!is.na(nc)][1L]
            o <- order(aod[, nc])
            if(trace) {
		print(aod[o,  ])
		utils::flush.console()
	    }
            if(o[1L] == 1) break
            change <- rownames(aod)[o[1L]]
        }
        usingCp <- match("Cp", names(aod), 0) > 0
        ## may need to look for a 'data' argument in parent
	fit <- update(fit, paste("~ .", change), evaluate = FALSE)
        fit <- eval.parent(fit)
        nnew <- nobs(fit, use.fallback = TRUE)
        if(all(is.finite(c(n, nnew))) && nnew != n)
            stop("number of rows in use has changed: remove missing values?")
        Terms <- terms(fit)
        bAIC <- extractAIC(fit, scale, k = k, ...)
        edf <- bAIC[1L]
        bAIC <- bAIC[2L]
        if(trace) {
            cat("\nStep:  AIC=", format(round(bAIC, 2)), "\n",
                cut.string(deparse(formula(fit))), "\n\n", sep='')
	    utils::flush.console()
	}
        ## add a tolerance as dropping 0-df terms might increase AIC slightly
        if(bAIC >= AIC + 1e-7) break
        nm <- nm + 1
        models[[nm]] <-
            list(deviance = mydeviance(fit), df.resid = n - edf,
                 change = change, AIC = bAIC)
        if(!is.null(keep)) keep.list[[nm]] <- keep(fit, bAIC)
    }
    if(!is.null(keep)) fit$keep <- re.arrange(keep.list[seq(nm)])
    step.results(models = models[seq(nm)], fit, object, usingCp)
}

extractAIC.loglm <- function(fit, scale, k = 2, ...)
{
    edf <- fit$n - fit$df
    c(edf,  fit$deviance + k * edf)
}

## defer to nlme
if(FALSE) {
extractAIC.lme <- function(fit, scale, k = 2, ...)
{
    if(fit$method != "ML") stop("AIC undefined for REML fit")
    res <- logLik(fit)
    edf <- attr(res, "df")
    c(edf,  -2*res + k * edf)
}

extractAIC.gls <- function(fit, scale, k = 2, ...)
{
    if(fit$method != "ML") stop("AIC undefined for REML fit")
    res <- logLik(fit)
    edf <- attr(res, "df")
    c(edf,  -2*res + k * edf)
}

terms.gls <- terms.lme <- function(x, ...) terms(formula(x), ...)
}