1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
|
\name{N.matrix}
\alias{N.matrix}
\title{ Construct N Matrix }
\description{
This function returns the order n square matrix that is the sum of
an implicit commutation matrix and the order n identity matrix
quantity divided by two
}
\usage{
N.matrix(n)
}
\arguments{
\item{n}{ A positive integer matrix order }
}
\details{
Let \eqn{{\bf{K}_n}} be the order \eqn{n} implicit commutation matrix (i.e., \eqn{{{\bf{K}}_{n,n}}} ).
and \eqn{{{\bf{I}}_n}} the order \eqn{n} identity matrix. The formula for the matrix is \eqn{{\bf{N}} = \frac{1}{2}\left( {{{\bf{K}}_n} + {{\bf{I}}_n}} \right)}.
}
\value{
An order \eqn{n} matrix.
}
\references{
Magnus, J. R. and H. Neudecker (1980). The elimination matrix, some lemmas and applications,
\emph{SIAM Journal on Algebraic Discrete Methods}, 1(4), December 1980, 422-449.
Magnus, J. R. and H. Neudecker (1999) \emph{Matrix Differential Calculus with Applications in Statistics and Econometrics},
Second Edition, John Wiley.
}
\author{ Frederick Novomestky \email{fnovomes@poly.edu} }
\note{
If the argument is not an integer, the function displays an error message and stops.
If the argument is less than two, the function displays an error message and stops.
}
\seealso{
\code{\link{K.matrix}}
}
\examples{
N <- N.matrix( 3 )
print( N )
}
\keyword{ math }
|