File: frobenius.matrix.Rd

package info (click to toggle)
r-cran-matrixcalc 1.0.6-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 552 kB
  • sloc: makefile: 2
file content (42 lines) | stat: -rw-r--r-- 1,498 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
\name{frobenius.matrix}
\alias{frobenius.matrix}
\title{ Frobenius Matrix }
\description{
  This function returns an order n Frobenius matrix that is useful
  in numerical mathematics.
}
\usage{
frobenius.matrix(n)
}
\arguments{
  \item{n}{  a positive integer value greater than 1}
}
\details{
  The Frobenius matrix is also called the companion matrix.  It arises
  in the solution of systems of linear first order differential equations.
  The formula for the order \eqn{n} Frobenius matrix is \eqn{{\bf{F}} = 
\left\lbrack {\begin{array}{ccccc}0&0& \cdots &0&{{{\left( { - 1} \right)}^{n - 1}}
\left( {\begin{array}{ccccc}n\\0\end{array}} \right)}\\1&0& \cdots &0&{{{\left( { - 1} \right)}^{n - 2}}
\left( {\begin{array}{ccccc}n\\1\end{array}} \right)}\\0&1& \ddots &0&{{{\left( { - 1} \right)}^{n - 3}}
\left( {\begin{array}{ccccc}n\\2\end{array}} \right)}\\ \vdots & \vdots & \ddots & \vdots & \vdots \\0&0& \cdots &1&{{{\left( { - 1} \right)}^0}
\left( {\begin{array}{ccccc}n\\{n - 1}\end{array}} 
\right)}\end{array}} 
\right\rbrack}.
}
\value{
  An order \eqn{n} matrix
}
\references{
  Aceto, L. and D. Trigiante (2001). Matrices of Pascal and Other Greats,
  \emph{American Mathematical Monthly}, March 2001, 108(3), 232-245.
}
\author{ Frederick Novomestky \email{fnovomes@poly.edu} }
\note{
  If the argument n is not a positive integer that is greater than 1, 
  the function presents an error message and stops.
}
\examples{
F <- frobenius.matrix( 10 )
print( F )
}
\keyword{ math }