1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
|
\name{is.singular.matrix}
\alias{is.singular.matrix}
\title{ Test for singular square matrix }
\description{
This function returns \code{TRUE} is the matrix argument is singular
and \code{FALSE} otherwise.
}
\usage{
is.singular.matrix(x, tol = 1e-08)
}
\arguments{
\item{x}{ a numeric square matrix }
\item{tol}{ a numeric tolerance level usually left out }
}
\details{
The determinant of the matrix \code{x} is first computed.
If the absolute value of the determinant is less than the given
tolerance level, then a \code{TRUE} value is returned.
Otherwise, a \code{FALSE} value is returned.
}
\value{
A TRUE or FALSE value.
}
\references{
Bellman, R. (1987). \emph{Matrix Analysis}, Second edition, Classics in Applied Mathematics,
Society for Industrial and Applied Mathematics.
Horn, R. A. and C. R. Johnson (1990). \emph{Matrix Analysis}, Cambridge University Press.
}
\author{ Frederick Novomestky \email{fnovomes@poly.edu} }
\seealso{
\code{\link{is.non.singular.matrix}}
}
\examples{
A <- diag( 1, 3 )
is.singular.matrix( A )
B <- matrix( c( 0, 0, 3, 4 ), nrow=2, byrow=TRUE )
is.singular.matrix( B )
}
\keyword{ math }
|