1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
|
\name{is.skew.symmetric.matrix}
\alias{is.skew.symmetric.matrix}
\title{ Test for a skew-symmetric matrix }
\description{
This function returns \code{TRUE} if the matrix argument x is
a skew symmetric matrix, i.e., the transpose of the matrix is
the negative of the matrix. Otherwise, \code{FALSE} is returned.
}
\usage{
is.skew.symmetric.matrix(x, tol = 1e-08)
}
\arguments{
\item{x}{ a numeric square matrix }
\item{tol}{ a numeric tolerance level usually left out }
}
\details{
Let \eqn{{\bf{x}}} be an order \eqn{n} matrix. If every element
of the matrix \eqn{{\bf{x}} + {\bf{x'}}} in absolute value is less
than the given tolerance, then the matrix argument is declared to be
skew symmetric.
}
\value{
A TRUE or FALSE value.
}
\references{
Bellman, R. (1987). \emph{Matrix Analysis}, Second edition, Classics in Applied Mathematics,
Society for Industrial and Applied Mathematics.
Horn, R. A. and C. R. Johnson (1990). \emph{Matrix Analysis}, Cambridge University Press.
}
\author{ Frederick Novomestky \email{fnovomes@poly.edu} }
\examples{
A <- diag( 1, 3 )
is.skew.symmetric.matrix( A )
B <- matrix( c( 0, -2, -1, -2, 0, -4, 1, 4, 0 ), nrow=3, byrow=TRUE )
is.skew.symmetric.matrix( B )
C <- matrix( c( 0, 2, 1, 2, 0, 4, 1, 4, 0 ), nrow=3, byrow=TRUE )
is.skew.symmetric.matrix( C )
}
\keyword{ math }
|