1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
|
\name{svd.inverse}
\alias{svd.inverse}
\title{ SVD Inverse of a square matrix }
\description{
This function returns the inverse of a matrix using singular value
decomposition. If the matrix is a square matrix, this should be equivalent
to using the \code{solve} function. If the matrix is not a square matrix,
then the result is the Moore-Penrose pseudo inverse.
}
\usage{
svd.inverse(x)
}
\arguments{
\item{x}{ a numeric matrix }
}
\value{
A matrix.
}
\references{
Bellman, R. (1987). \emph{Matrix Analysis}, Second edition, Classics in Applied Mathematics,
Society for Industrial and Applied Mathematics.
}
\author{ Frederick Novomestky \email{fnovomes@poly.edu} }
\examples{
A <- matrix( c ( 1, 2, 2, 1 ), nrow=2, byrow=TRUE)
invA <- svd.inverse( A )
print( A )
print( invA )
print( A \%*\% invA )
B <- matrix( c( -1, 2, 2 ), nrow=1, byrow=TRUE )
invB <- svd.inverse( B )
print( B )
print( invB )
print( B \%*\% invB )
}
\keyword{ math }
|