File: vandermonde.matrix.Rd

package info (click to toggle)
r-cran-matrixcalc 1.0.6-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 552 kB
  • sloc: makefile: 2
file content (41 lines) | stat: -rw-r--r-- 1,352 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
\name{vandermonde.matrix}
\alias{vandermonde.matrix}
\title{ Vandermonde matrix }
\description{
  This function returns an m by n matrix of the powers of the alpha vector
}
\usage{
vandermonde.matrix(alpha, n)
}
\arguments{
  \item{alpha}{ A numerical vector of values }
  \item{n}{ The column dimension of the Vandermonde matrix }
}
\details{
  In linear algebra, a Vandermonde matrix is an \eqn{m \times n} matrix with terms
  of a geometric progression of an \eqn{m \times 1} parameter vector \eqn{{\bf{\alpha }} = {\left\lbrack {\begin{array}{cccc}
{{\alpha _1}}&{{\alpha _2}}& \cdots &{{\alpha _m}}
\end{array}} \right\rbrack^\prime }}

  such that \eqn{V\left( {\bf{\alpha }} \right) = \left\lbrack {\begin{array}{ccccc}
1&{{\alpha _1}}&{\alpha _1^2}& \cdots &{\alpha _1^{n - 1}}\\
1&{{\alpha _2}}&{\alpha _2^2}& \cdots &{\alpha _2^{n - 1}}\\
1&{{\alpha _3}}&{\alpha _3^2}& \cdots &{\alpha _3^{n - 1}}\\
 \cdots & \cdots & \cdots & \cdots & \cdots \\
1&{{\alpha _m}}&{\alpha _m^2}& \cdots &{\alpha _m^{n - 1}}
\end{array}} \right\rbrack}.
}
\value{
  A matrix.
}
\references{
  Horn, R. A. and C. R. Johnson (1991). \emph{Topics in matrix analysis}, Cambridge
  University Press.
}
\author{ Frederick Novomestky \email{fnovomes@poly.edu} }
\examples{
alpha <- c( .1, .2, .3, .4 )
V <- vandermonde.matrix( alpha, 4 )
print( V )
}
\keyword{ math }