1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
|
\name{vandermonde.matrix}
\alias{vandermonde.matrix}
\title{ Vandermonde matrix }
\description{
This function returns an m by n matrix of the powers of the alpha vector
}
\usage{
vandermonde.matrix(alpha, n)
}
\arguments{
\item{alpha}{ A numerical vector of values }
\item{n}{ The column dimension of the Vandermonde matrix }
}
\details{
In linear algebra, a Vandermonde matrix is an \eqn{m \times n} matrix with terms
of a geometric progression of an \eqn{m \times 1} parameter vector \eqn{{\bf{\alpha }} = {\left\lbrack {\begin{array}{cccc}
{{\alpha _1}}&{{\alpha _2}}& \cdots &{{\alpha _m}}
\end{array}} \right\rbrack^\prime }}
such that \eqn{V\left( {\bf{\alpha }} \right) = \left\lbrack {\begin{array}{ccccc}
1&{{\alpha _1}}&{\alpha _1^2}& \cdots &{\alpha _1^{n - 1}}\\
1&{{\alpha _2}}&{\alpha _2^2}& \cdots &{\alpha _2^{n - 1}}\\
1&{{\alpha _3}}&{\alpha _3^2}& \cdots &{\alpha _3^{n - 1}}\\
\cdots & \cdots & \cdots & \cdots & \cdots \\
1&{{\alpha _m}}&{\alpha _m^2}& \cdots &{\alpha _m^{n - 1}}
\end{array}} \right\rbrack}.
}
\value{
A matrix.
}
\references{
Horn, R. A. and C. R. Johnson (1991). \emph{Topics in matrix analysis}, Cambridge
University Press.
}
\author{ Frederick Novomestky \email{fnovomes@poly.edu} }
\examples{
alpha <- c( .1, .2, .3, .4 )
V <- vandermonde.matrix( alpha, 4 )
print( V )
}
\keyword{ math }
|