File: modelMatrix.R

package info (click to toggle)
r-cran-matrixmodels 0.5-4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 168 kB
  • sloc: makefile: 2
file content (626 lines) | stat: -rw-r--r-- 22,600 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
####---- This was part of ../../Matrix/R/spModels.R -- till 2010-07-25

model.Matrix <- function(object, data = environment(object),
		 contrasts.arg = NULL, xlev = NULL,
			 sparse = FALSE, drop.unused.levels = FALSE, ...)
{
    if(sparse) {
	m <- sparse.model.matrix(object, data=data, contrasts.arg=contrasts.arg,
				 drop.unused.levels=drop.unused.levels, xlev=xlev,
				 ...)
	new("dsparseModelMatrix",  m, ## dropping attributes ?
	    assign = attr(m, "assign"),
	    contrasts = if(is.null(ctr <- attr(m,"contrasts")))list() else ctr)
    } else {
	## as standard	model.matrix() but producing a	"ddenseModelMatrix":
	m <- model.matrix(object, data=data,
			  contrasts.arg=contrasts.arg, xlev=xlev, ...)
	new("ddenseModelMatrix", as(m, "generalMatrix"),
	    assign = attr(m, "assign"),
	    contrasts = if(is.null(ctr <- attr(m,"contrasts")))list() else ctr)
    }
}



### Keep this namespace-hidden: Would need to return a classed object

## FIXME: still test this function for both methods, since currently
## ----- both  dgCMatrix_cholsol and  dgCMatrix_qrsol are only called from here!
lm.fit.sparse <- function(x, y, w = NULL, offset = NULL,
			  method = c("qr", "cholesky"),
                          ## (tol, singular.ok): UNused
			  tol = 1e-7, singular.ok = TRUE, order = NULL,
			  transpose = FALSE)
### Fit a linear model, __ given __ a sparse model matrix 'x'
### using a sparse QR or a sparse Cholesky factorization
{
    cld <- getClass(class(x))
    stopifnot(extends(cld, "dsparseMatrix"), is.numeric(y))
## or	  if(!is(x, "dsparseMatrix")) x <- as(x, "dsparseMatrix")
    if(transpose) { tx <- x ; x <- t(x) }
    n <- nrow(x)
    if(NROW(y) != n) stop("incompatible dimensions of (x,y)")
    ny <- NCOL(y)
    if (!is.null(offset)) {
	stopifnot(length(offset) == n)
	y <- y - as.numeric(offset)
    }
    if(ny != 1L) ## FIXME: should not be too much work!
	stop("multivariate, i.e., matrix 'y' is not yet implemented")
    if ((has.w <- !is.null(w))) {
	if(any(w < 0 | is.na(w)))
	    stop("missing or negative weights not allowed")
	if(length(w) != n)
	    stop("weights vector 'w' is of wrong length")

	zero.weights <- any(wis0 <- w == 0)
	if (zero.weights) {
	    save.r <- y
	    save.f <- y
	    save.w <- w
	    ok <- !wis0 # == w != 0
	    i0 <- which(wis0)
	    ok <- which(ok) # (faster when indexing repeatedly)
	    w <- w[ok]
	    x0 <- x[i0, , drop = FALSE]
	    x  <- x[ok, , drop = FALSE]
	    n <- nrow(x)
	    y0 <- if (ny > 1L) y[i0, , drop = FALSE] else y[i0]
	    y  <- if (ny > 1L) y[ok, , drop = FALSE] else y[ok]
	}
	wts <- sqrt(w)
	## keep the unweighted (x,y):  y. <- y ## x. <- x
	x <- x * wts
	y <- y * wts
    }

    method <- match.arg(method)
    ## FIXME? - only needed in "qr" case
    order <- {
	if(is.null(order)) ## recommended default depends on method :
	    if(method == "qr") 3L else 1L
	else as.integer(order) }

    switch(method,
	   "cholesky" = {
               ## need only coef --> add option to compute only that!
	       r <- .solve.dgC.chol(as(if(transpose) tx else t(x), "CsparseMatrix"), y)
	       coef <- r[["coef"]]
	   },
	   "qr" = {
	       coef <-
		   .solve.dgC.qr(if(cld@className %in% c("dtCMatrix", "dgCMatrix")) x
				 else as(x, "CsparseMatrix"),
				 y, order)
	       ## for now -- FIXME -- also gives 'residuals', and 'L', the triangularMatrix factor
	       return(coef)
	   },
	   ## otherwise:
	   stop("unknown method ", dQuote(method))
	   )

    ## FIXME: add names to coef as in lm.wfit(),
    ##		~/R/D/r-devel/R/src/library/stats/R/lm.R
    resid <- if(has.w) r[["resid"]] / wts else r[["resid"]]
    z <- list(coef = coef, weights = w,
	      residuals = resid, fitted.values = y - resid)
    if(has.w && zero.weights) {
	coef[is.na(coef)] <- 0
	f0 <- x0 %*% coef
	if (ny > 1) {
	    save.r[ok, ] <- resid
	    save.r[i0, ] <- y0 - f0
	    save.f[ok, ] <- z$fitted.values
	    save.f[i0, ] <- f0
	}
	else {
	    save.r[ok] <- resid
	    save.r[i0] <- y0 - f0
	    save.f[ok] <- z$fitted.values
	    save.f[i0] <- f0
	}
	z$residuals <- save.r
	z$fitted.values <- save.f
	z$weights <- save.w
    }
    if(!is.null(offset))
	z$fitted.values <- z$fitted.values + offset

    z
}

## allow extra args to be passed to print, notably those
## to printSpMatrix()  [ ../sparseMatrix.R ] :
printModelMat <- function(x, ...)
{
    ## workaround because	 callNextMethod() fails here:
    cat(sprintf("\"%s\": ", class(x)[1]))
    ## (an "intermediate" class) - why exactly? -- callNextMethod()
    print(as(x, "generalMatrix"), ...)
    ## end{workaround}
    p <- length(ass <- x@assign)
    c.ass <- encodeString(ass)
    if(sum(nchar(c.ass))+ p-1 < getOption("width") - 10) ## short enough
	cat("@ assign: ", c.ass,"\n")
    else {
	cat("@ assign:\n"); print(ass)
    }
    cat("@ contrasts:\n"); print(x@contrasts)
    invisible(x)
}

setMethod("print", "modelMatrix", printModelMat)
setMethod("show", "modelMatrix", function(object) printModelMat(object))


setAs("ddenseModelMatrix", "predModule",
      function(from)
  {
      p <- ncol(from)
      new("dPredModule", coef = numeric(p), Vtr = numeric(p),
          ## Cholesky(<dsyMatrix>, perm = TRUE) would be symmetric with
          ## Cholesky(<dsCMatrix>, perm = TRUE) _but_ the dense, pivoted
          ## method does not test for positive semidefiniteness; see, e.g.,
          ## help("Cholesky", package = "Matrix")
          X = from, fac = Cholesky(crossprod(from), perm = FALSE))
  })

setAs("dsparseModelMatrix", "predModule",
      function(from)
  {
      p <- ncol(from)
      new("sPredModule", coef = numeric(p), Vtr = numeric(p),
          X = from, fac = Cholesky(crossprod(from), LDL = FALSE))
  })

##' Create an respModule, which could be from a derived class such as
##' glmRespMod or nlsRespMod.
##' @title Create a respModule object
##' @param a model frame
##' @param family the optional glm family (glmRespMod only)
##' @param nlenv the nonlinear model evaluation environment (nlsRespMod only)
##' @param nlmod the nonlinear model function (nlsRespMod only)
##' @param pnames character vector of parameter names for the
##'        nonlinear model
##' @return an respModule object
mkRespMod <- function(fr, family = NULL, nlenv = NULL, nlmod = NULL)
{
    N <- n <- nrow(fr)
    if (!is.null(nlmod)) {
        nleta <- eval(nlmod, nlenv)
        grad <- attr(nleta, "gradient")
        if (is.null(grad))
            stop("At present a nonlinear model must return a gradient attribute")
        N <- n * ncol(grad)
    }
                                        # components of the model frame
    y <- model.response(fr)
    if(length(dim(y)) == 1) { # avoid problems with 1D arrays, but keep names
        nm <- rownames(y)
        dim(y) <- NULL
        if(!is.null(nm)) names(y) <- nm
    }
    weights <- model.weights(fr)
    if (is.null(weights)) weights <- rep.int(1, n)
    else if (any(weights < 0))
        stop(gettext("negative weights not allowed", domain = "R-Matrix"))
    offset <- model.offset(fr)
    if (is.null(offset)) offset <- numeric(N)
    if (length(offset) == 1) offset <- rep.int(offset, N)
    else if (length(offset) != N)
        stop(gettextf("number of offsets (%d) should be %d (s * n)",
                      length(offset), N), domain = "R-Matrix")
    ll <- list(weights = unname(weights), offset = unname(offset),
               wtres = numeric(n))
    if (!is.null(family)) {
        ll$y <- y                       # may get overwritten later
        rho <- new.env()
        rho$etastart <- model.extract(fr, "etastart")
        rho$mustart <- model.extract(fr, "mustart")
        rho$nobs <- n
        if (is.character(family))
            family <- get(family, mode = "function", envir = parent.frame(3))
        if (is.function(family)) family <- family()
        eval(family$initialize, rho)
        family$initialize <- NULL       # remove clutter from str output
        ll$mu <- unname(rho$mustart)
        lr <- as.list(rho)
        ll[names(lr)] <- lr             # may overwrite y, weights, etc.
        ll$weights <- unname(ll$weights)
        ll$y <- unname(ll$y)
        ll$eta <- family$linkfun(ll$mu)
        ll$sqrtrwt <- sqrt(ll$weights/family$variance(ll$mu))
        ll$sqrtXwt <- matrix(ll$sqrtrwt * family$mu.eta(ll$eta))
        ll$family <- family
        ll <- ll[intersect(names(ll), slotNames("glmRespMod"))]
        ll$n <- unname(rho$n)           # for the family$aic function
        ll$Class <- "glmRespMod"
    } else {
        ll$sqrtrwt <- sqrt(ll$weights)
        ll$y <- unname(as.numeric(y))
        ll$mu <- numeric(n)
        if (is.null(nlenv)) {
            ll$Class <- "respModule"
            ll$sqrtXwt <- matrix(ll$sqrtrwt)
        } else {
            ll$Class <- "nlsRespMod"
            ll$nlenv <- nlenv
	    ll$nlmod <- quote(nlmod)
            ll$sqrtXwt <- grad
            ll$pnames <- colnames(ll$sqrtXwt)
        }
    }
    do.call("new", ll)
}

glm4 <- function(formula, family, data, weights, subset,
                 na.action, start = NULL, etastart, mustart, offset,
		 sparse = FALSE, drop.unused.levels = FALSE, doFit = TRUE,
		 control = list(...),
                 ## all the following are currently ignored:
                 model = TRUE, x = FALSE, y = TRUE, contrasts = NULL, ...) {
    call <- match.call()
    if (missing(family)) {
        family <- NULL
    } else {
        if(is.character(family))
            family <- get(family, mode = "function", envir = parent.frame())
        if(is.function(family)) family <- family()
        if(is.null(family$family)) {
            print(family)
            stop("'family' not recognized")
        }
    }
    ## extract x, y, etc from the model formula and frame
    if(missing(data)) data <- environment(formula)
    mf <- match.call(expand.dots = FALSE)
    m <- match(c("formula", "data", "subset", "weights", "na.action",
                 "etastart", "mustart", "offset"), names(mf), 0L)
    mf <- mf[c(1L, m)]
    mf$drop.unused.levels <- TRUE
    ## need stats:: for non-standard evaluation
    mf[[1L]] <- quote(stats::model.frame)
    mf <- eval(mf, parent.frame())

    ## mt <- attr(mf, "terms") # allow model.frame to have updated it

    Y <- model.response(mf, "any") # e.g. factors are allowed
    ## avoid problems with 1D arrays, but keep names
    if(length(dim(Y)) == 1L) {
        nm <- rownames(Y)
        dim(Y) <- NULL
        if(!is.null(nm)) names(Y) <- nm
    }
    ## null model support

    ## glm():
    ## X <- if (!is.empty.model(mt)) model.matrix(mt, mf, contrasts) else matrix(,NROW(Y), 0L)
    ## ?? Needed: ??
    ## if(is.empty.model(mt)) stop("empty model not yet supported in glm4()")

    ## if(!isTRUE (model)) .NotYetUsed("model")
    ## if(!isFALSE(x)) .NotYetUsed("x")
    ## if(!isTRUE (y)) .NotYetUsed("y")

    ans <- new("glpModel", call = call,
	       resp = mkRespMod(mf, family),
	       pred = as(model.Matrix(formula, mf, sparse = sparse,
				      contrasts.arg = contrasts,
				      drop.unused.levels=drop.unused.levels),
			 "predModule"))
    if (doFit)
	## TODO ? - make 'doFP' a function argument / control component:
	fitGlm4(ans, doFP = TRUE, control = control)
    else
	ans
}

fitGlm4 <- function(lp, doFP = TRUE, control = list()) {
### note that more than one iteration would need to update more than just 'coef'
    if(doFP && is(lp@resp, "glmRespMod"))
        lp@pred@coef <- glm.fp(lp)
    IRLS(lp, control)
}

##' A single step in the fixed-point algorithm for GLMs.
##'
##' In general we use an algorithm similar to the Gauss-Newton
##' algorithm for nonlinear least squares (except, of course, that it
##' allows for reweighting).  For some models, such as those using the
##' Gamma family with the inverse link the initial values of eta must
##' be non-zero.  This function calculates a single iteration of the
##' fixed-point algorithm used in stats::glm.fit to obtain suitable
##' starting estimates for the parameters.
##' @title Fixed-point iteration for a GLM
##' @param lp a linear predictor model.  The resp slot should inherit
##' from the glmRespMod class.
##' @return parameter vector
glm.fp <- function(lp) {
    stopifnot(is(lp, "glpModel"), is(rM <- lp@resp, "glmRespMod"))
    ff <- rM@family
    mu <- rM@mu
    vv <- ff$variance(mu)
    eta <- rM@eta
    muEta <- ff$mu.eta(eta)
    wts <- rM@weights
    z <- (eta - rM@offset) + (rM@y - rM@mu)/muEta
    good <- is.finite(vv) & vv > 0 & is.finite(z)
    stopifnot(any(good))
    w <- sqrt(wts * muEta * muEta /vv)[good]
    wM <- lp@pred@X[good,] * w
    as.vector(solve(crossprod(wM), crossprod(wM, z[good] * w)))
}

##'
##' @title
##' @param control  a (named) list {or vector; as.list(.)  must work}.
##' @param defaults a (named) list {or vector; as.list(.)  must work}.
##' @param rho typically an environment; in fact anything that "works" as third
##'    argument in  'assign(nm, val, rho)'>
##' @param nomatch.action string specifying what should happen when control()
##'    entries do not match any of the defaults.
##' @return none. Side effect: 'rho' will contain 'control' and 'defaults' entries.
##' @author Doug Bates (& Martin Maechler)
do.defaults <- function(control, defaults, rho,
			## by default stop() on mistyped control arguments:
			nomatch.action = c("stop", "warning", "none"))
{
    nomatch.action <- match.arg(nomatch.action)
					# Install the default values
    dnms <- names(defaults <- as.list(defaults))
    lapply(dnms, function(nm) assign(nm, defaults[[nm]], rho))
					# Match names of control arguments to defaults
    matched <- !is.na(mm <- pmatch(names(control <- as.list(control)), dnms))
    if(nomatch.action != "none" && any(!matched)) {
	msg <-
	    paste("The following control arguments did not match any default's names:",
		  paste(dQuote(names(control)[!matched]), collapse=", "), sep="\n   ")
	switch(nomatch.action,
	       "warning" = warning(msg, call.=FALSE, immediate.=TRUE),
	       "stop" = stop(msg, call.=FALSE))
    }
    if (any(matched)) {
	cc <- control[matched]
	names(cc) <- dnms[mm[matched]]
	lapply(names(cc),
	       function(nm) assign(nm, as(cc[[nm]], class(defaults[[nm]])), rho))
    }
    invisible()
}

IRLS <- function(mod, control) {
    stopifnot(is(mod, "glpModel"))
    respMod <- mod@resp
    predMod <- mod@pred
    ## localVariables("..."):
    MXITER <- warnOnly <- verbose <- quick <- TOL <- SMIN <- finalUpdate <- NULL
    do.defaults(control,
		list(MXITER = 200L, TOL = 0.0001, SMIN = 0.0001,
		     verbose = 0L,# integer: for verboseness levels
		     warnOnly = FALSE,
		     quick = TRUE, finalUpdate = FALSE),
                environment())
    cc <- predMod@coef
    respMod <- updateMu(respMod, as.vector(predMod@X %*% cc))
    iter <- nHalvings <- 0 ; DONE <- FALSE
    repeat {
	if((iter <- iter + 1) > MXITER) {
            msg <- paste("Number of iterations exceeded maximum MXITER =", MXITER)
            if(!warnOnly)
                stop(msg)
            ## else :
            warning(msg)
            cc <- cbase
            DONE <- TRUE
            break
        }
        cbase <- cc
        respMod <- updateWts(respMod)
        wrss0 <- sum(respMod@wtres^2)
        predMod <- reweightPred(predMod, respMod@sqrtXwt, respMod@wtres)
        incr <- solveCoef(predMod)
        convcrit <- sqrt(attr(incr, "sqrLen")/wrss0)
	if(verbose)
	    cat(sprintf("_%d_ convergence criterion: %5g\n",
			iter, convcrit))
        if(quick)## faster, but "loses" precision by not doing the "free" update:
            if (convcrit < TOL) break
        step <- 1
        repeat {
            cc <- as.vector(cbase + step * incr)
            respMod <- updateMu(respMod, as.vector(predMod@X %*% cc))
            wrss1 <- sum(respMod@wtres^2)
            if (verbose) {
		cat(sprintf("step = %.5f, new wrss = %.8g, Delta(wrss)= %g, coef =\n",
                            step, wrss1, wrss0 - wrss1))
                print(cc)
            }
	    if (wrss1 < wrss0) break
	    ## else
	    if ((step <- step/2) < SMIN) {
                msg <- "Minimum step factor 'SMIN' failed to reduce wrss"
		if(!warnOnly)
                    stop(msg)
                ## else :
                warning(msg)
                cc <- cbase
                DONE <- TRUE
                break
	    }
            ## no further step halving, if we are good enough anyway
	    if (DONE <- convcrit < TOL) break
            nHalvings <- nHalvings + 1
	}
        if(DONE || (!quick # check now
                    && convcrit < TOL))
            break
    }
    predMod@coef <- cc
    if(finalUpdate) {
	respMod <- updateWts(respMod)
	predMod <- reweightPred(predMod, respMod@sqrtXwt, respMod@wtres)
    }

    mod@ fitProps <- list(convcrit=convcrit, iter=iter, nHalvings=nHalvings)
    ## This is more portable than  new("glpModel", ....) as soon as
    ## the class contains extra slots (such as 'call'):
    mod@ resp <- respMod
    mod@ pred <- predMod
    mod
}

setMethod("formula", "Model", function(x, ...) x@call$formula)
setMethod("coef", "glpModel", function(object, ...)
      {
	  prd <- object@pred
	  structure(prd@coef,
		    names = colnames(prd@X))
      })
setMethod("fitted", "respModule", function(object, ...) object@mu)
setMethod("fitted", "glpModel", function(object, ...) {object <- object@resp; callGeneric(...)})

setMethod("residuals", "respModule",
          function(object, type = c("deviance", "pearson",
                           "working", "response", "partial"), ...)
      {
	  type <- match.arg(type)
          if (type %in% c("pearson", "deviance")) return(object@wtres)
          if (type %in% c("working", "response")) return(object@y - object@mu)
          stop(paste("residuals of type", sQuote(type), "not yet available"))
      })
setMethod("residuals", "glmRespMod",
          function(object, type = c("deviance", "pearson",
                           "working", "response", "partial"), ...)
      {
	  type <- match.arg(type)
          if (type == "pearson") return(object@wtres)

          fam <- object@family
	  mu <- object@mu
	  y <- object@y
          wts <- object@weights
          residuals <- y - mu
	  if (type == "response") return(residuals)
          if (type == "working") return(residuals/fam$mu.eta(object@eta))
          if (type == "deviance") {
              d.res <- sqrt(pmax(fam$dev.resids(y, mu, wts), 0))
              return(ifelse(y > mu, d.res, -d.res))
          }
          stop(paste("residuals of type", sQuote(type), "not yet available"))
      })
setMethod("residuals", "glpModel",
          function(object, type = c("deviance", "pearson",
                           "working", "response", "partial"), ...)
      {
          object <- object@resp
          callGeneric(...)
      })

setMethod("updateMu", signature(respM = "respModule", gamma = "numeric"),
	  function(respM, gamma, ...)
      {
	  respM@ wtres <- respM@sqrtrwt *
	      (respM@y - (respM@ mu <- respM@offset + gamma))
	  respM
      })

setMethod("updateMu", signature(respM = "glmRespMod", gamma = "numeric"),
          function(respM, gamma, ...)
      {
          respM@ mu <- respM@family$linkinv(respM@ eta <- respM@offset + gamma)
          respM@ wtres <- respM@sqrtrwt * (respM@y - respM@mu)
          respM
      })

setMethod("updateMu", signature(respM = "nlsRespMod", gamma = "numeric"),
          function(respM, gamma, ...)
      {
          ll <- as.data.frame(matrix(respM@offset + gamma,
                                     nrow = length(respM@y),
                                     dimnames = list(NULL, respM@pnames)))
          lapply(names(ll),
                 function(nm) assign(nm, ll[[nm]], envir = respM@nlenv))
          mm <- eval(respM@nlmod, respM@nlenv)
          respM@ wtres <- respM@sqrtrwt * (respM@y - (respM@ mu <- as.vector(mm)))
          respM@ sqrtXwt <- respM@sqrtrwt * attr(mm, "grad")
          respM
      })
setMethod("updateMu", signature(respM = "nglmRespMod", gamma = "numeric"),
	  function(respM, gamma, ...)
      {
	  .NotYetImplemented() ## FIXME
      })


## For models based on a Gaussian distribution (incl. "nlsRespMod")
## updateWts() has no effect:
setMethod("updateWts", signature(respM = "respModule"),
          function(respM, ...) respM)

setMethod("updateWts", signature(respM = "glmRespMod"),
          function(respM, ...)
      {
	  respM@ sqrtrwt   <- rtrwt <- sqrt(respM@weights/respM@family$variance(respM@mu))
	  respM@ sqrtXwt[] <- rtrwt * respM@family$mu.eta(respM@eta)
	  respM@ wtres	   <- rtrwt * (respM@y - respM@mu)
	  respM
      })

setMethod("reweightPred",
          signature(predM = "dPredModule", sqrtXwt = "matrix", wtres = "numeric"),
          function(predM, sqrtXwt, wtres, ...)
      {
          V <- as.vector(sqrtXwt) * predM@X
          s <- ncol(sqrtXwt)
          if (s > 1L)
              V <- Reduce("+", lapply(split(seq_len(nrow(V)), gl(s, nrow(sqrtXwt))),
                                      function(ind) V[ind,]))
          predM@Vtr <- as.vector(crossprod(V, wtres))
          predM@fac <- Cholesky(crossprod(V), perm = FALSE)
          predM
      })

setMethod("reweightPred",
          signature(predM = "sPredModule", sqrtXwt = "matrix", wtres = "numeric"),
          function(predM, sqrtXwt, wtres, ...)
      {
          Vt <- crossprod(predM@X, Diagonal(x = as.vector(sqrtXwt)))
          s <- ncol(sqrtXwt)
          if (s > 1L)
              Vt <- Reduce("+", lapply(split(seq_len(ncol(Vt)), gl(s, nrow(sqrtXwt))),
                                      function(ind) Vt[, ind]))
          predM@Vtr <- as.vector(Vt %*% wtres)
          predM@fac <- update(predM@fac, Vt)
          predM
      })

## P' L L' P x = b  <=>  x = P' solve(L') solve(L) P b

setMethod("solveCoef", "dPredModule", function(predM, ...)
      {
          ff <- as(predM@fac, "dtrMatrix")
          up <- ff@uplo == "U"
          b <- predM@Vtr
          if(pp.uns <- is.unsorted(pp <- predM@fac@perm))
              b <- b[pp]
          cc <- solve(if(up) t(ff) else ff, b)
          x <- solve(if(up) ff else t(ff), cc)
          if(pp.uns)
              x <- x[invertPerm(pp)]
          structure(x, sqrLen = sum(cc * cc))
      })

setMethod("solveCoef", "sPredModule", function(predM, ...)
      {
          ff <- predM@fac
          if (isLDL(ff)) stop("sparse factor must be LL, not LDL")
          b <- predM@Vtr
          if(pp.uns <- is.unsorted(pp <- ff@perm + 1L))
              b <- b[pp]
          cc <- solve(ff, b, system = "L")
          x <- solve(ff, cc, system = "Lt")
          if(pp.uns)
              x <- x[invertPerm(pp)]
          structure(x, sqrLen = sum(cc * cc))
      })