1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/weightedMedian.R
\name{weightedMedian}
\alias{weightedMedian}
\title{Weighted Median Value}
\usage{
weightedMedian(x, w = NULL, idxs = NULL, na.rm = FALSE,
interpolate = is.null(ties), ties = NULL, ...)
}
\arguments{
\item{x}{\code{\link[base]{vector}} of type \code{\link[base]{integer}},
\code{\link[base]{numeric}}, or \code{\link[base]{logical}}.}
\item{w}{a vector of weights the same length as \code{x} giving the weights
to use for each element of \code{x}. Negative weights are treated as zero
weights. Default value is equal weight to all values.}
\item{idxs}{A \code{\link[base]{vector}} indicating subset of elements to
operate over. If \code{\link[base]{NULL}}, no subsetting is done.}
\item{na.rm}{a logical value indicating whether \code{\link[base]{NA}}
values in \code{x} should be stripped before the computation proceeds, or
not. If \code{\link[base]{NA}}, no check at all for \code{\link[base]{NA}}s
is done.}
\item{interpolate}{If \code{\link[base:logical]{TRUE}}, linear interpolation
is used to get a consistent estimate of the weighted median.}
\item{ties}{If \code{interpolate == FALSE}, a character string specifying
how to solve ties between two \code{x}'s that are satisfying the weighted
median criteria. Note that at most two values can satisfy the criteria.
When \code{ties} is \code{"min"} ("lower weighted median"), the smaller
value of the two is returned and when it is \code{"max"} ("upper weighted
median"), the larger value is returned. If \code{ties}
is \code{"mean"}, the mean of the two values is returned. Finally, if
\code{ties} is \code{"weighted"} (or \code{\link[base]{NULL}}) a weighted
average of the two are returned, where the weights are weights of all values
\code{x[i] <= x[k]} and \code{x[i] >= x[k]}, respectively.}
\item{...}{Not used.}
}
\value{
Returns a \code{\link[base]{numeric}} scalar.
For the \code{n} elements \code{x = c(x[1], x[2], ..., x[n])} with positive
weights \code{w = c(w[1], w[2], ..., w[n])} such that \code{sum(w) = S}, the
\emph{weighted median} is defined as the element \code{x[k]} for which the
total weight of all elements \code{x[i] < x[k]} is less or equal to
\code{S/2} and for which the total weight of all elements \code{x[i] > x[k]}
is less or equal to \code{S/2} (c.f. [1]).
When using linear interpolation, the weighted mean of \code{x[k-1]} and
\code{x[k]} with weights \code{S[k-1]} and \code{S[k]} corresponding to the
cumulative weights of those two elements is used as an estimate.
If \code{w} is missing then all elements of \code{x} are given the same
positive weight. If all weights are zero, \code{\link[base:NA]{NA_real_}} is
returned.
If one or more weights are \code{Inf}, it is the same as these weights have
the same weight and the others have zero. This makes things easier for cases
where the weights are result of a division with zero.
If there are missing values in \code{w} that are part of the calculation
(after subsetting and dropping missing values in \code{x}), then the final
result is always \code{NA} of the same type as \code{x}.
The weighted median solves the following optimization problem:
\deqn{\alpha^* = \arg_\alpha \min \sum_{i = 1}^{n} w_i |x_i-\alpha|} where
\eqn{x = (x_1, x_2, \ldots, x_n)} are scalars and
\eqn{w = (w_1, w_2, \ldots, w_n)} are the corresponding "weights" for each
individual \eqn{x} value.
}
\description{
Computes a weighted median of a numeric vector.
}
\examples{
x <- 1:10
n <- length(x)
m1 <- median(x) # 5.5
m2 <- weightedMedian(x) # 5.5
stopifnot(identical(m1, m2))
w <- rep(1, times = n)
m1 <- weightedMedian(x, w) # 5.5 (default)
m2 <- weightedMedian(x, ties = "weighted") # 5.5 (default)
m3 <- weightedMedian(x, ties = "min") # 5
m4 <- weightedMedian(x, ties = "max") # 6
stopifnot(identical(m1, m2))
# Pull the median towards zero
w[1] <- 5
m1 <- weightedMedian(x, w) # 3.5
y <- c(rep(0, times = w[1]), x[-1]) # Only possible for integer weights
m2 <- median(y) # 3.5
stopifnot(identical(m1, m2))
# Put even more weight on the zero
w[1] <- 8.5
weightedMedian(x, w) # 2
# All weight on the first value
w[1] <- Inf
weightedMedian(x, w) # 1
# All weight on the last value
w[1] <- 1
w[n] <- Inf
weightedMedian(x, w) # 10
# All weights set to zero
w <- rep(0, times = n)
weightedMedian(x, w) # NA
# Simple benchmarking
bench <- function(N = 1e5, K = 10) {
x <- rnorm(N)
gc()
t <- c()
t[1] <- system.time(for (k in 1:K) median(x))[3]
t[2] <- system.time(for (k in 1:K) weightedMedian(x))[3]
t <- t / t[1]
names(t) <- c("median", "weightedMedian")
t
}
print(bench(N = 5, K = 100))
print(bench(N = 50, K = 100))
print(bench(N = 200, K = 100))
print(bench(N = 1000, K = 100))
print(bench(N = 10e3, K = 20))
print(bench(N = 100e3, K = 20))
}
\references{
[1] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to
Algorithms, The MIT Press, Massachusetts Institute of Technology, 1989.
}
\seealso{
\code{\link[stats]{median}}, \code{\link[base]{mean}}() and
\code{\link{weightedMean}}().
}
\author{
Henrik Bengtsson and Ola Hossjer, Centre for Mathematical Sciences,
Lund University. Thanks to Roger Koenker, Econometrics, University of
Illinois, for the initial ideas.
}
\keyword{robust}
\keyword{univar}
|