File: test-maxSG.R

package info (click to toggle)
r-cran-maxlik 1.5-2.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,676 kB
  • sloc: sh: 39; makefile: 2
file content (229 lines) | stat: -rw-r--r-- 7,401 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
### tests for stochastic gradient ascent
### 
### do not run unless 'NOT_CRAN' explicitly defined
### (Suggested by Sebastian Meyer and others)
if(!identical(Sys.getenv("NOT_CRAN"), "true")) {
    message("We are on CRAN: skipping slow optimizer tests")
    q("no")
}
if(!requireNamespace("tinytest", quietly = TRUE)) {
   message("These tests require 'tinytest' package\n")
   q("no")
}
library(maxLik)

### Test the following things:
###
### 1. basic 2-D SGA
###    SGA without function, only gradient
###    SGA neither function nor gradient
###    SGA in 1-D case
### 2. SGA w/momentum
### 3. SGA full batch
### 4. SGA, no gradient supplied
###    SGA, return numeric hessian, gradient provided
###    SGA, return numeric hessian, no gradient provided
###    SGA, printlevel 1, storeValues
###    SGA, NA as iterlim: should give informative error
###    SGA, storeValues but no fn (should fail)
###
### using highly unequally scaled data
###    SGA without gradient clipping (fails)
###    SGA with gradient clipping (works, although does not converge)

## ---------- OLS 
## log-likelihood function(s):
## return log-likelihood on validation data
loglik <- function(beta, index) {
   e <- yValid - XValid %*% beta
   -crossprod(e)/length(y)
}
## gradlik: work on training data
gradlik <- function(beta, index) {
   e <- yTrain[index] - XTrain[index,,drop=FALSE] %*% beta
   g <- t(-2*t(XTrain[index,,drop=FALSE]) %*% e)
   -g/length(index)
}

### create random data
set.seed(1)
N <- 1000
x <- rnorm(N)
X <- cbind(1, x)
y <- 100 + 100*x + rnorm(N)
## training-validation
iTrain <- sample(N, 0.8*N)
XTrain <- X[iTrain,,drop=FALSE]
XValid <- X[-iTrain,,drop=FALSE]
yTrain <- y[iTrain]
yValid <- y[-iTrain]
## Analytic solution (training data):
start <- c(const=10, x=10)
b0 <- drop(solve(crossprod(XTrain)) %*% crossprod(XTrain, yTrain))
names(b0) <- names(start)
tol <- 1e-3  # coefficient tolerance

## ---------- 1. working example
res <- maxSGA(loglik, gradlik, start=start,
            control=list(printLevel=0, iterlim=200,
                         SG_batchSize=100, SG_learningRate=0.1,
                         storeValues=TRUE),
            nObs=length(yTrain))
expect_equal(coef(res), b0, tolerance=tol)
                           # SGA usually ends with gradient not equal to 0 so we don't test that

## ---------- store parameters
res <- maxSGA(loglik, gradlik, start=start,
              control=list(printLevel=0, iterlim=20,
                           SG_batchSize=100, SG_learningRate=0.1,
                           storeParameters=TRUE),
              nObs=length(yTrain))
expect_equal(dim(storedParameters(res)), c(1 + nIter(res), 2))

## ---------- no function, only gradient
expect_silent(
   res <- maxSGA(grad=gradlik, start=start,
                 control=list(printLevel=0, iterlim=10, SG_batchSize=100),
                 nObs=length(yTrain))
)

## ---------- neither function nor gradient
expect_error(
   res <- maxSGA(start=start,
                 control=list(printLevel=0, iterlim=10, SG_batchSize=100),
                 nObs=length(yTrain))
)

## ---------- 1D case
N1 <- 1000
t <- rexp(N1, 2)
loglik1 <- function(theta, index) sum(log(theta) - theta*t[index])
gradlik1 <- function(theta, index) sum(1/theta - t[index])
expect_silent(
   res <- maxSGA(loglik1, gradlik1, start=1,
                 control=list(iterlim=300, SG_batchSize=20), nObs=length(t))
)
expect_equal(coef(res), 1/mean(t), tolerance=0.2)
expect_null(hessian(res))

## ---------- 2. SGA with momentum
expect_silent(
   res <- maxSGA(loglik, gradlik, start=start,
                 control=list(printLevel=0, iterlim=200,
                              SG_batchSize=100, SG_learningRate=0.1, SGA_momentum=0.9),
                 nObs=length(yTrain))
)
expect_equal(coef(res), b0, tolerance=tol)

## ---------- 3. full batch
expect_silent(
   res <- maxSGA(loglik, gradlik, start=start,
                 control=list(printLevel=0, iterlim=200,
                              SG_batchSize=NULL, SG_learningRate=0.1),
                 nObs=length(yTrain))
)
expect_equal(coef(res), b0, tolerance=tol)

## ---------- 4. no gradient
expect_silent(
   res <- maxSGA(loglik, start=start,
                 control=list(iterlim=1000, SG_learningRate=0.02), nObs=length(yTrain))
)
expect_equal(coef(res), b0, tolerance=tol)

## ---------- return Hessian, gradient provided
expect_silent(
   res <- maxSGA(loglik, gradlik, start=start,
                 control=list(iterlim=1000, SG_learningRate=0.02),
                 nObs=length(yTrain),
                 finalHessian=TRUE)
)
expect_equal(coef(res), b0, tolerance=tol)
expect_equal(dim(hessian(res)), c(2,2))

## ---------- return Hessian, no gradient
expect_silent(
   res <- maxSGA(loglik, start=start,
                 control=list(iterlim=1000, SG_learningRate=0.02),
                 nObs=length(yTrain),
                 finalHessian=TRUE)
)
expect_equal(coef(res), b0, tolerance=tol)
expect_equal(dim(hessian(res)), c(2,2))

### ---------- SGA, printlevel 1, storeValues ----------
### it should just work
expect_silent(
   res <- maxSGA(loglik, gradlik, start=start,
                 control=list(iterlim=2, storeValues=TRUE, printLevel=1),
                 nObs=length(yTrain),
                 finalHessian=TRUE)
)

### ---------- SGA, NA as iterlim ----------
### should give informative error
expect_error(
   res <- maxSGA(loglik, gradlik, start=start,
                 control=list(iterlim=NA),
                 nObs=length(yTrain),
                 finalHessian=TRUE),
   pattern = "invalid class \"MaxControl\" object: NA in 'iterlim'"
)

### ---------- SGA, fn missing but storeValues=TRUE
### should give informative error
expect_error(
   res <- maxSGA(grad=gradlik, start=start,
                 control=list(iterlim=10, storeValues=TRUE),
                 nObs=length(yTrain)),
    pattern = "Cannot compute the objective function value: no objective function supplied"
)

## ---------- gradient by observations
gradlikO <- function(beta, index) {
   e <- yTrain[index] - XTrain[index,,drop=FALSE] %*% beta
   g <- -2*drop(e)*XTrain[index,,drop=FALSE]
   -g/length(index)
}
expect_silent(
   res <- maxSGA(grad=gradlikO, start=start,
                 control=list(printLevel=0, iterlim=100,
                              SG_batchSize=100),
                 nObs=length(yTrain))
)
expect_equal(coef(res), b0, tolerance=tol)

## ---------- 0 iterations
expect_silent(
   res <- maxSGA(grad=gradlik, start=start,
                 control=list(iterlim=0),
                 nObs=length(yTrain))
)
expect_equal(coef(res), start)
                           # should return start values exactly

### -------------------- create unequally scaled data
set.seed(1)
N <- 1000
x <- rnorm(N, sd=100)
XTrain <- cbind(1, x)
yTrain <- 1 + x + rnorm(N)
start <- c(const=10, x=10)

## ---------- no gradient clipping:
## should fail with informative "NA/Inf in gradient" message
expect_error(
   res <- maxSGA(loglik, gradlik, start=start,
                 control=list(iterlim=100, SG_learningRate=0.5),
                 nObs=length(yTrain)),
   pattern = "NA/Inf in gradient"
)

## ---------- gradient clipping: should not fail
expect_silent(
   res <- maxSGA(loglik, gradlik, start=start,
                 control=list(iterlim=100, SG_learningRate=0.5,
                              SG_clip=1e6),
                 nObs=length(yTrain)
                 )
)