File: test-optimizers.R

package info (click to toggle)
r-cran-maxlik 1.5-2.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,676 kB
  • sloc: sh: 39; makefile: 2
file content (629 lines) | stat: -rw-r--r-- 25,731 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
### This code tests all the methods and main parameters.  It includes:
### * analytic gradients/Hessian
### * fixed parameters
### * inequality constraints
### * equality constraints

## do not run unless 'NOT_CRAN' explicitly defined
## (Suggested by Sebastian Meyer and others)
if (!identical(Sys.getenv("NOT_CRAN"), "true")) {
    message("skipping slow optimizer tests")
    q("no")
}
if(!requireNamespace("tinytest", quietly = TRUE)) {
   message("These tests require 'tinytest' package\n")
   q("no")
}
library(maxLik)

## data to fit a normal distribution
# set seed for pseudo random numbers
set.seed( 123 )
tol <- .Machine$double.eps^0.25
## generate a variable from normally distributed random numbers
truePar <- c(mu=1, sigma=2)
NOBS <- 100
x <- rnorm(NOBS, truePar[1], truePar[2] )
xSaved <- x

## log likelihood function
llf <- function( param ) {
   mu <- param[ 1 ]
   sigma <- param[ 2 ]
   if(!(sigma > 0))
       return(NA)
                           # to avoid warnings in the output
   sum(dnorm(x, mu, sigma, log=TRUE))
}

## log likelihood function (individual observations)
llfInd <- function( param ) {
   mu <- param[ 1 ]
   sigma <- param[ 2 ]
   if(!(sigma > 0))
       return(NA)
                           # to avoid warnings in the output
   llValues <- -0.5 * log( 2 * pi ) - log( sigma ) -
      0.5 * ( x - mu )^2 / sigma^2
   return( llValues )
}

## function to calculate analytical gradients
gf <- function( param ) {
   mu <- param[ 1 ]
   sigma <- param[ 2 ]
   N <- length( x )
   llGrad <- c( sum( ( x - mu ) / sigma^2 ),
      - N / sigma + sum( ( x - mu )^2 / sigma^3 ) )
   return( llGrad )
}

## function to calculate analytical gradients (individual observations)
gfInd <- function( param ) {
   mu <- param[ 1 ]
   sigma <- param[ 2 ]
   llGrads <- cbind( ( x - mu ) / sigma^2,
      - 1 / sigma + ( x - mu )^2 / sigma^3 )
   return( llGrads )
}

## log likelihood function with gradients as attributes
llfGrad <- function( param ) {
   mu <- param[ 1 ]
   sigma <- param[ 2 ]
   if(!(sigma > 0))
       return(NA)
                           # to avoid warnings in the output
   N <- length( x )
   llValue <- -0.5 * N * log( 2 * pi ) - N * log( sigma ) -
      0.5 * sum( ( x - mu )^2 / sigma^2 )
   attributes( llValue )$gradient <- c( sum( ( x - mu ) / sigma^2 ),
      - N / sigma + sum( ( x - mu )^2 / sigma^3 ) )
   return( llValue )
}

## log likelihood function with gradients as attributes (individual observations)
llfGradInd <- function( param ) {
   mu <- param[ 1 ]
   sigma <- param[ 2 ]
   if(!(sigma > 0))
       return(NA)
                           # to avoid warnings in the output
   llValues <- -0.5 * log( 2 * pi ) - log( sigma ) -
      0.5 * ( x - mu )^2 / sigma^2
   attributes( llValues )$gradient <- cbind( ( x - mu ) / sigma^2,
      - 1 / sigma + ( x - mu )^2 / sigma^3 )
   return( llValues )
}

## function to calculate analytical Hessians
hf <- function( param ) {
   mu <- param[ 1 ]
   sigma <- param[ 2 ]
   N <- length( x )
   llHess <- matrix( c(
      N * ( - 1 / sigma^2 ),
      sum( - 2 * ( x - mu ) / sigma^3 ),
      sum( - 2 * ( x - mu ) / sigma^3 ),
      N / sigma^2 + sum( - 3 * ( x - mu )^2 / sigma^4 ) ),
      nrow = 2, ncol = 2 )
   return( llHess )
}

## log likelihood function with gradients and Hessian as attributes
llfGradHess <- function( param ) {
   mu <- param[ 1 ]
   sigma <- param[ 2 ]
   if(!(sigma > 0))
       return(NA)
                           # to avoid warnings in the output
   N <- length( x )
   llValue <- -0.5 * N * log( 2 * pi ) - N * log( sigma ) -
      0.5 * sum( ( x - mu )^2 / sigma^2 )
   attributes( llValue )$gradient <- c( sum( ( x - mu ) / sigma^2 ),
      - N / sigma + sum( ( x - mu )^2 / sigma^3 ) )
   attributes( llValue )$hessian <- matrix( c(
      N * ( - 1 / sigma^2 ),
      sum( - 2 * ( x - mu ) / sigma^3 ),
      sum( - 2 * ( x - mu ) / sigma^3 ),
      N / sigma^2 + sum( - 3 * ( x - mu )^2 / sigma^4 ) ),
      nrow = 2, ncol = 2 )
   return( llValue )
}

## log likelihood function with gradients as attributes (individual observations)
llfGradHessInd <- function( param ) {
   mu <- param[ 1 ]
   sigma <- param[ 2 ]
   if(!(sigma > 0))
       return(NA)
                           # to avoid warnings in the output
   N <- length( x )
   llValues <- -0.5 * log( 2 * pi ) - log( sigma ) -
      0.5 * ( x - mu )^2 / sigma^2
   attributes( llValues )$gradient <- cbind( ( x - mu ) / sigma^2,
      - 1 / sigma + ( x - mu )^2 / sigma^3 )
   attributes( llValues )$hessian <- matrix( c(
      N * ( - 1 / sigma^2 ),
      sum( - 2 * ( x - mu ) / sigma^3 ),
      sum( - 2 * ( x - mu ) / sigma^3 ),
      N / sigma^2 + sum( - 3 * ( x - mu )^2 / sigma^4 ) ),
      nrow = 2, ncol = 2 )
   return( llValues )
}

# start values
startVal <- c( mu = 0, sigma = 1 )

## basic NR: test if all methods work
ml <- maxLik( llf, start = startVal )
expect_equal(
   coef(ml), truePar, tol=2*max(stdEr(ml))
)
expect_stdout(
   print( ml ),
   pattern = "Estimate\\(s\\): 1.18.*1.81"
)
expect_stdout(
   print( summary( ml )),
   pattern = "Estimates:"
)
expect_equal(
   activePar( ml ), c(mu=TRUE, sigma=TRUE)
)
expect_equal(
   AIC( ml ), 407.167892384587,
   tol = 0.1, check.attributes=FALSE
)
expect_equal(
   coef( ml ), c(mu=1.181, sigma=1.816),
   tol = 0.001
)
expect_stdout(
   condiNumber( ml, digits = 3),
   "mu[[:space:]]+1[[:space:]\n]+sigma[[:space:]]+1\\."
)
expect_equal(
   hessian( ml), matrix(c(-30.3, 0, 0, -60.6), 2, 2),
   tol = 0.01, check.attributes = FALSE
)
expect_equal(
   logLik( ml ), -201.583946192294,
   tol = tol, check.attributes = FALSE
)
expect_equal(
   maximType( ml ), "Newton-Raphson maximisation"
)
expect_equal(
   nIter( ml ) > 5, TRUE
)
expect_error(
   nObs( ml ),
   "cannot return the number of observations"
)
expect_equal(
   nParam( ml ), 2
)
expect_equal(
   returnCode( ml ), 1
)
expect_equal(
   returnMessage( ml ), "gradient close to zero (gradtol)"
)
expect_equal(
   vcov( ml ), matrix(c(0.032975, 0, 0, 0.0165), 2, 2),
   tol=0.01, check.attributes = FALSE
)
expect_equal(
   logLik( summary( ml ) ), logLik(ml)
)
mlInd <- maxLik( llfInd, start = startVal )
expect_stdout(
   print( summary( mlInd ), digits = 2 ),
   "mu +1\\.18"
)
expect_equal(
   nObs( mlInd ), length(x)
)
## Marquardt (1963) correction
mlM <- maxLik( llf, start = startVal, qac="marquardt")
expect_equal(
   coef(mlM), coef(ml),
                           # coefficients should be the same as above
   tol=tol
)
expect_equal(
   returnMessage(mlM), returnMessage(ml)
)

## test plain results with analytical gradients
## compare coefficients, Hessian
mlg <- maxLik(llf, gf, start = startVal )
expect_equal(coef(ml), coef(mlg), tol=tol)
expect_equal(hessian(ml), hessian(mlg), tolerance = 1e-2)
## gradient with individual components
mlgInd <- maxLik( llfInd, gfInd, start = startVal )
expect_equal(coef(mlInd), coef(mlgInd), tolerance = 1e-3)
expect_equal(hessian(mlg), hessian(mlgInd), tolerance = 1e-3)

## with analytical gradients as attribute
mlG <- maxLik( llfGrad, start = startVal )
expect_equal(coef(mlG), coef(mlg), tolerance = tol)
expect_equivalent(gradient(mlG), gf( coef( mlG ) ), tolerance = tol)
mlGInd <- maxLik( llfGradInd, start = startVal )
expect_equal(coef(mlGInd), coef(mlgInd), tolerance = tol)
expect_equivalent(gradient(mlGInd), colSums( gfInd( coef( mlGInd ) ) ), tolerance = tol)
expect_equivalent(estfun(mlGInd), gfInd( coef( mlGInd ) ), tolerance=tol)

## with analytical gradients as argument and attribute
expect_warning(mlgG <- maxLik( llfGrad, gf, start = startVal))
expect_equal(coef(mlgG), coef(mlg), tolerance = tol)

## with analytical gradients and Hessians
mlgh <- maxLik( llf, gf, hf, start = startVal )
expect_equal(coef(mlg), coef(mlgh), tolerance = tol)

## with analytical gradients and Hessian as attribute
mlGH <- maxLik( llfGradHess, start = startVal )
expect_equal(coef(mlGH), coef(mlgh), tolerance = tol)

## with analytical gradients and Hessian as argument and attribute
expect_warning(mlgGhH <- maxLik( llfGradHess, gf, hf, start = startVal ))
expect_equal(coef(mlgGhH), coef(mlgh), tolerance = tol)


## ---------- BHHH method ----------
## cannot do BHHH if llf not provided by individual
x <- xSaved[1]
expect_error( maxLik( llfInd, start = startVal, method = "BHHH" ) )
## 2 observations: can do BHHH
x <- xSaved[1:2]
expect_silent( maxLik( llfInd, start = startVal, method = "BHHH" ) )
##
x <- xSaved
mlBHHH <- maxLik( llfInd, start = startVal, method = "BHHH" )
expect_stdout(print( mlBHHH ),
              pattern = "Estimate\\(s\\): 1\\.18.* 1\\.81")
expect_stdout(print(summary( mlBHHH)), pattern = "mu *1.18")
expect_equivalent(activePar( mlBHHH ), c(TRUE, TRUE))
expect_equivalent(AIC( mlBHHH ), 407.168, tolerance=0.01)
expect_equal(coef( mlBHHH ), setNames(c(1.180808, 1.816485), c("mu", "sigma")), tolerance=tol)
expect_equal(condiNumber( mlBHHH, printLevel=0),
             setNames(c(1, 1.72), c("mu", "sigma")), tol=0.01)
expect_equivalent(hessian( mlBHHH ),
                  matrix(c(-30.306411, -1.833632, -1.833632, -55.731646), 2, 2),
                  tolerance=0.01)
expect_equivalent(logLik( mlBHHH ), -201.583946192983, tolerance=tol)
expect_equal(maximType( mlBHHH ), "BHHH maximisation")
expect_equal(nIter(mlBHHH) > 3, TRUE)
                           # here 12 iterations
expect_equal(nParam( mlBHHH ), 2)
expect_equal(returnCode( mlBHHH ), 8)
expect_equal(returnMessage( mlBHHH ),
             "successive function values within relative tolerance limit (reltol)")
expect_equivalent(vcov( mlBHHH ),
                  matrix(c(0.03306213, -0.00108778, -0.00108778, 0.01797892), 2, 2),
                  tol=0.001)
expect_equivalent(logLik(summary(mlBHHH)), -201.583946192983, tolerance=tol)
expect_equal(coef(ml), coef(mlBHHH), tol=tol)
expect_equal(stdEr(ml), stdEr(mlBHHH), tol=0.1)
expect_equal(nObs( mlBHHH ), length(x))
# final Hessian = usual Hessian
expect_silent(mlBhhhH <- maxLik( llfInd, start = startVal, method = "BHHH", 
                                finalHessian = TRUE )
              )
                           # do not test Hessian equality--BHHH may be imprecise, at least
                           # for diagonal elements
expect_stdout(print(hessian( mlBhhhH )),
              pattern="mu.*\nsigma.+")
## Marquardt (1963) correction
expect_silent(mlBHHHM <- maxLik( llfInd, start = startVal, method = "BHHH", qac="marquardt"))
expect_equal(coef(mlBHHHM), coef(mlBHHH), tolerance=tol)
expect_equal(returnMessage(mlBHHHM), "successive function values within relative tolerance limit (reltol)")

## BHHH with analytical gradients
expect_error( maxLik( llf, gf, start = startVal, method = "BHHH" ) )
                           # need individual log-likelihood
expect_error( maxLik( llfInd, gf, start = startVal, method = "BHHH" ) )
                           # need individual gradient
x <- xSaved[1]  # test with a single observation
expect_error(maxLik( llf, gfInd, start = startVal, method = "BHHH" ))
                           # gradient must have >= 2 rows
expect_error( maxLik( llfInd, gfInd, start = startVal, method = "BHHH" ) )
                           # ditto even if individual likelihood components
x <- xSaved[1:2]  # test with 2 observations
expect_silent(maxLik( llf, gfInd, start = startVal, method = "BHHH",
                     iterlim=1))
                           # should work with 2 obs
expect_silent( maxLik( llfInd, gfInd, start = startVal, method = "BHHH",
                      iterlim=1) )
                           # should work with 2 obs
x <- xSaved
expect_silent(mlgBHHH <- maxLik( llfInd, gfInd, start = startVal, method = "BHHH" ))
                           # individual log-likelihood, gradient
expect_equal(coef(mlBHHH), coef(mlgBHHH), tolerance = tol)
expect_equal(coef(mlg), coef(mlgBHHH), tolerance = tol)
expect_silent(mlgBHHH2 <- maxLik( llf, gfInd, start = startVal, method = "BHHH" ))
                           # aggregated log-likelihood, individual gradient
expect_equal(coef(mlgBHHH), coef(mlgBHHH2), tolerance=tol)
                           # final Hessian = usual Hessian
expect_silent(
   mlgBhhhH <- maxLik( llf, gfInd, start = startVal, method = "BHHH", 
                      finalHessian = TRUE )
)
expect_equal(hessian(mlgBhhhH), hessian(mlBhhhH), tolerance = 1e-2)

## with analytical gradients as attribute
expect_error( maxLik( llfGrad, start = startVal, method = "BHHH" ) )
                           # no individual gradients provided
x <- xSaved[1]
expect_error( maxLik( llfGrad, start = startVal, method = "BHHH" ),
             pattern = "gradient is not a matrix")
                           # get an error about need a matrix
expect_error( maxLik( llfGradInd, start = startVal, method = "BHHH" ),
             pattern = "at least as many rows")
                           # need at least two obs
x <- xSaved[1:2]
expect_error( maxLik( llfGrad, start = startVal, method = "BHHH" ),
             pattern = "gradient is not a matrix")
                           # enough obs but no individual grad
x <- xSaved
expect_silent(mlGBHHH <- maxLik( llfGradInd, start = startVal, method = "BHHH" ))
expect_equal(coef(mlGBHHH), coef(mlgBHHH), tolerance = tol)
                           # final Hessian = usual Hessian
expect_silent(mlGBhhhH <- maxLik( llfGradInd, start = startVal, method = "BHHH", 
                                 finalHessian = TRUE ))
expect_equal(hessian(mlGBhhhH), hessian(mlgBhhhH), tolerance = tol)

## with analytical gradients as argument and attribute
expect_warning(mlgGBHHH <- maxLik( llfGradInd, gfInd, start = startVal, method = "BHHH" ),
               pattern = "both as attribute 'gradient' and as argument 'grad'")
                           # warn about double gradient
expect_equal(coef(mlgGBHHH), coef(mlgBHHH), tolerance = tol)
## with unused Hessian
expect_silent(mlghBHHH <- maxLik( llfInd, gfInd, hf, start = startVal, method = "BHHH" ))
expect_equal(coef(mlgBHHH), coef(mlghBHHH), tolerance = tol)
## final Hessian = usual Hessian
expect_silent(
   mlghBhhhH <- maxLik( llfInd, gfInd, hf, start = startVal, method = "BHHH", 
                       finalHessian = TRUE )
)
expect_equivalent(hessian(mlghBhhhH), hessian(mlghBHHH), tolerance = 0.2)
                           # BHHH and ordinary hessian differ quite a bit
## with unused Hessian as attribute
expect_silent(mlGHBHHH <- maxLik( llfGradHessInd, start = startVal, method = "BHHH" ))
expect_equal(coef(mlGHBHHH), coef(mlghBHHH), tolerance = tol)
## final Hessian = usual Hessian
expect_silent(mlGHBhhhH <- maxLik( llfGradHessInd, start = startVal, method = "BHHH", 
                                  finalHessian = TRUE ))
expect_equal(hessian(mlGHBhhhH), hessian(mlghBhhhH), tolerance = tol)
## with analytical gradients and Hessian as argument and attribute
expect_warning(
   mlgGhHBHHH <- maxLik( llfGradHessInd, gfInd, hf, start = startVal, method = "BHHH" ),
   pattern = "both as attribute 'gradient' and as argument 'grad': ignoring"
)
expect_equal(coef(mlgGhHBHHH), coef(mlghBHHH), tolerance = tol)
expect_equal(hessian(mlgGhHBHHH), hessian(mlGHBHHH), tolerance = tol)

## ---------- Test BFGS methods ----------
optimizerNames <- c(bfgsr = "BFGSR", bfgs = "BFGS", nm = "Nelder-Mead",
                    sann = "SANN", cg = "CG")
successCodes <- list(bfgsr = 1:4, bfgs = 0, nm = 0, sann = 0, cg = 0)
successMsgs <- list(bfgsr = c("successive function values within tolerance limit (tol)"),
                    bfgs = c("successful convergence "),
                           # includes space at end...
                    nm = c("successful convergence "),
                    sann = c("successful convergence "),
                    cg = c("successful convergence ")
                    )
for(optimizer in c("bfgsr", "bfgs", "nm", "sann", "cg")) {
   expect_silent(mlResult <- maxLik( llf, start = startVal, method = optimizer ))
   expect_stdout(print( mlResult ),
                 pattern = paste0(optimizerNames[optimizer], " maximization")
                 )
   expect_stdout(print( summary( mlResult )),
                 pattern = paste0(optimizerNames[optimizer], " maximization,.*Estimates:")
                 )
   expect_equal(coef(ml), coef(mlResult), tolerance=0.001)
   expect_equal(stdEr(ml), stdEr(mlResult), tolerance=0.01)
   expect_equal(activePar( mlResult ), c(mu=TRUE, sigma=TRUE))
   expect_equivalent(AIC( mlResult ), 407.167893392749, tolerance=tol)
   expect_equivalent( hessian( mlResult ),
                     matrix(c(-30.32596, 0.00000, 0.00000, -60.59508), 2, 2),
                     tolerance = 0.01)
   expect_equivalent(logLik( mlResult ), -201.5839, tolerance = 0.01)
   expect_equal(maximType( mlResult ),
                paste0(optimizerNames[optimizer], " maximization")
                )
   expect_true(nIter( mlResult ) > 1 & is.integer(nIter(mlResult)))
   expect_error( nObs( mlResult ),
                pattern = "cannot return the number of observations")
   expect_equal(nParam( mlResult ), 2)
   expect_true(returnCode( mlResult ) %in% successCodes[[optimizer]])
   expect_equal(returnMessage( mlResult), successMsgs[[optimizer]])
   expect_equal(logLik( summary( mlResult ) ), logLik(mlResult))
   ## individual observations
   expect_silent(mlIndResult <- maxLik( llfInd, start = startVal, method = optimizer))
   expect_stdout(print( summary( mlIndResult )),
                 pattern = paste0(optimizerNames[optimizer], " maximization,.*Estimates:")
                 )
   expect_equal(coef(mlResult), coef(mlIndResult), tolerance = tol)
   expect_equal(stdEr(mlResult), stdEr(mlIndResult), tolerance = 0.01)
   expect_equal(nObs( mlIndResult ), length(x))
   ## with analytic gradients
   expect_silent(mlgResult <- maxLik( llf, gf, start = startVal, method = optimizer))
   expect_equal(coef(mlgResult), coef(mlResult), tolerance = tol)
   expect_equal(stdEr(mlgResult), stdEr(mlResult), tolerance = 0.01)
   expect_silent(mlgIndResult <- maxLik( llfInd, gfInd, start = startVal,
                                        method = optimizer ))
   expect_equal(coef(mlgIndResult), coef(mlResult), tolerance = tol)
   expect_equal(stdEr(mlgIndResult), stdEr(mlResult), tolerance = 0.01)
   ## with analytical gradients as attribute
   expect_silent(mlGResult <- maxLik( llfGrad, start = startVal,
                                     method = optimizer))
   expect_equal(coef(mlGResult), coef(mlResult), tolerance = tol)
   expect_equal(stdEr(mlGResult), stdEr(mlResult), tolerance = 0.01)
   expect_silent(mlGIndResult <- maxLik( llfGradInd, start = startVal, method = optimizer ))
   expect_equal(coef(mlGIndResult), coef(mlResult), tolerance = tol)
   expect_equal(stdEr(mlGIndResult), stdEr(mlResult), tolerance = 0.01)
   ## with analytical gradients as argument and attribute
   expect_warning(mlgGResult <- maxLik( llfGrad, gf, start = startVal, method = optimizer ))
   expect_equal(coef(mlgGResult), coef(mlResult), tolerance = tol)
   expect_equal(stdEr(mlgGResult), stdEr(mlResult), tolerance = 0.01)
   ## with analytical gradients and Hessians
   expect_silent(mlghResult <- maxLik( llf, gf, hf, start = startVal, method = optimizer ))
   expect_equal(coef(mlghResult), coef(mlResult), tolerance = tol)
   expect_equal(stdEr(mlghResult), stdEr(mlResult), tolerance = 0.01)
   ## with analytical gradients and Hessian as attribute
   expect_silent(mlGHResult <- maxLik( llfGradHess, start = startVal, method = optimizer ))
   expect_equal(coef(mlGHResult), coef(mlResult), tolerance = tol)
   expect_equal(stdEr(mlGHResult), stdEr(mlResult), tolerance = 0.01)
   ## with analytical gradients and Hessian as argument and attribute
   expect_warning(mlgGhHResult <- maxLik( llfGradHess, gf, hf, start = startVal, method = optimizer ))
   expect_equal(coef(mlgGhHResult), coef(mlResult), tolerance = tol)
   expect_equal(stdEr(mlgGhHResult), stdEr(mlResult), tolerance = 0.01)
}


### ---------- with fixed parameters ----------
## start values
startValFix <- c( mu = 1, sigma = 1 )
## fix mu (the mean ) at its start value
isFixed <- c( TRUE, FALSE )
successMsgs <- list(bfgsr = c("successive function values within tolerance limit (tol)"),
                    bfgs = c("successful convergence "),
                           # includes space at end...
                    nm = c("successful convergence "),
                    sann = c("successful convergence "),
                    cg = c("successful convergence ")
                    )
## NR method with fixed parameters
for(optimizer in c("nr", "bfgsr", "bfgs", "sann", "cg")) {
   expect_silent(
      mlFix <- maxLik( llf, start = startValFix, fixed = isFixed, method=optimizer)
   )
   expect_equivalent(coef(mlFix)[1], 1)
   expect_equivalent(stdEr(mlFix)[1], 0)
   expect_silent(
      mlFix3 <- maxLik(llf, start = startValFix, fixed = "mu", method=optimizer)
   )
   expect_equal(coef(mlFix), coef(mlFix3))
   mlFix4 <- maxLik( llf, start = startValFix, fixed = which(isFixed),
                    method=optimizer)
   expect_equal(coef(mlFix), coef(mlFix4), tolerance=tol)
   expect_equivalent(activePar( mlFix ), !isFixed)
   expect_equal(nParam( mlFix ), 2)
   ## with analytical gradients
   mlgFix <- maxLik( llf, gf, start = startValFix, fixed = isFixed,
                    method=optimizer)
   expect_equal(coef(mlgFix), coef(mlFix), tolerance=tol)
   ## with analytical gradients and Hessians
   mlghFix <- maxLik( llf, gf, hf, start = startValFix, fixed = isFixed,
                     method=optimizer)
   expect_equal(coef(mlghFix), coef(mlFix), tolerance=tol)
}
## Repeat the previous for NM as that one does not like 1-D optimization
for(optimizer in c("nm")) {
   expect_warning(
      mlFix <- maxLik( llf, start = startValFix, fixed = isFixed, method=optimizer)
   )
   expect_equivalent(coef(mlFix)[1], 1)
   expect_equivalent(stdEr(mlFix)[1], 0)
   expect_warning(
      mlFix3 <- maxLik(llf, start = startValFix, fixed = "mu", method=optimizer)
   )
   expect_equal(coef(mlFix), coef(mlFix3))
   expect_warning(
      mlFix4 <- maxLik( llf, start = startValFix, fixed = which(isFixed),
                       method=optimizer)
   )
   expect_equal(coef(mlFix), coef(mlFix4), tolerance=tol)
   expect_equivalent(activePar( mlFix ), !isFixed)
   expect_equal(nParam( mlFix ), 2)
   ## with analytical gradients
   expect_warning(
      mlgFix <- maxLik( llf, gf, start = startValFix, fixed = isFixed,
             method=optimizer)
   )
   expect_equal(coef(mlgFix), coef(mlFix), tolerance=tol)
   ## with analytical gradients and Hessians
   expect_warning(
      mlghFix <- maxLik( llf, gf, hf, start = startValFix, fixed = isFixed,
             method=optimizer)
   )
   expect_equal(coef(mlghFix), coef(mlFix), tolerance=tol)
}
## Repeat for BHHH as that one need a different log-likelihood function
for(optimizer in c("bhhh")) {
   expect_silent(
      mlFix <- maxLik( llfInd, start = startValFix, fixed = isFixed, method=optimizer)
   )
   expect_equivalent(coef(mlFix)[1], 1)
   expect_equivalent(stdEr(mlFix)[1], 0)
   expect_silent(
      mlFix3 <- maxLik(llfInd, start = startValFix, fixed = "mu", method=optimizer)
   )
   expect_equal(coef(mlFix), coef(mlFix3))
   expect_silent(
      mlFix4 <- maxLik( llfInd, start = startValFix, fixed = which(isFixed),
                       method=optimizer)
   )
   expect_equal(coef(mlFix), coef(mlFix4), tolerance=tol)
   expect_equivalent(activePar( mlFix ), !isFixed)
   expect_equal(nParam( mlFix ), 2)
   ## with analytical gradients
   expect_silent(
      mlgFix <- maxLik( llf, gfInd, start = startValFix, fixed = isFixed,
             method=optimizer)
   )
   expect_equal(coef(mlgFix), coef(mlFix), tolerance=tol)
   ## with analytical gradients and Hessians
   expect_silent(
      mlghFix <- maxLik( llf, gfInd, hf, start = startValFix, fixed = isFixed,
             method=optimizer)
   )
   expect_equal(coef(mlghFix), coef(mlFix), tolerance=tol)
}

### ---------- inequality constraints ----------
A <- matrix( -1, nrow = 1, ncol = 2 )
inEq <- list( ineqA = A, ineqB = 2.5 )
                           # A theta + B > 0 i.e.
                           # mu + sigma < 2.5
for(optimizer in c("bfgs", "nm", "sann")) {
   expect_silent(
      mlInEq <- maxLik( llf, start = startVal, constraints = inEq,
                       method = optimizer )
   )
   expect_stdout(
      print( summary( mlInEq)),
      pattern = "constrained likelihood estimation. Inference is probably wrong.*outer iterations, barrier value"
   )
   expect_true(sum(coef( mlInEq )) < 2.5)
}

### ---------- equality constraints ----------
eqCon <- list(eqA = A, eqB = 2.5)
                           # A theta + B = 0 i.e.
                           # mu + sigma = 2.5
for(optimizer in c("nr", "bhhh", "bfgs", "nm", "sann")) {
   expect_silent(
      mlEq <- maxLik(llfInd, start = startVal, constraints = eqCon,
                     method = optimizer, SUMTTol = 0)
   )
   expect_stdout(
      print( summary( mlEq)),
      pattern = "constrained likelihood estimation. Inference is probably wrong.*outer iterations, barrier value"
   )
   expect_equal(sum(coef( mlEq )), 2.5, tolerance=1e-4)
}

### ---------- convergence tolerance parameters ----------
a <- maxNR(llf, gf, hf, start=startVal, tol=1e-3, reltol=0, gradtol=0, iterlim=10)
expect_equal(returnCode(a), 2)  # should stop with code 2: tolerance
a <- maxNR(llf, gf, hf, start=startVal, tol=0, reltol=1e-3, gradtol=0, iterlim=10)
expect_equal(returnCode(a), 8)  # 8: relative tolerance
a <- maxNR(llf, gf, hf, start=startVal, tol=0, reltol=0, gradtol=1e-3, iterlim=10)
expect_equal(returnCode(a), 1)  # 1: gradient
a <- maxNR(llf, gf, hf, start=startVal, tol=0, reltol=0, gradtol=0, iterlim=10)
expect_equal(returnCode(a), 4)  # 4: iteration limit