1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
|
### Test battery for various optimization parameters for different optimizers.
###
### ...
###
library(maxLik)
library(tinytest)
tol <- .Machine$double.eps^(0.25)
set.seed( 123 )
# generate a variable from normally distributed random numbers
N <- 50
x <- rnorm(N, 1, 2 )
## log likelihood function
llf <- function( param ) {
mu <- param[ 1 ]
sigma <- param[ 2 ]
if(!(sigma > 0))
return(NA)
# to avoid warnings in the output
N <- length( x )
llValue <- -0.5 * N * log( 2 * pi ) - N * log( sigma ) -
0.5 * sum( ( x - mu )^2 / sigma^2 )
return( llValue )
}
# start values
startVal <- c( mu = 0, sigma = 1 )
#
expect_silent(ml <- maxLik( llf, start = startVal ))
expect_equivalent(coef(ml), c(1.069, 1.833), tolerance=tol)
## tol
expect_silent(mlTol <- maxLik( llf, start = startVal, tol=1))
expect_equal(returnCode(mlTol), 2)
# tolerance limit
expect_silent(mlTolC <- maxLik(llf, start=startVal, control=list(tol=1)))
expect_equal(coef(mlTol), coef(mlTolC))
expect_equal(hessian(mlTol), hessian(mlTolC))
expect_equal(returnCode(mlTol), returnCode(mlTolC))
expect_silent(ml <- maxLik( llf, start = startVal, tol=-1))
# negative tol switches tol off
expect_silent(ml <- maxLik( llf, start = startVal, control=list(tol=-1)))
expect_false(returnCode(ml) == 2)
# should not be w/in tolerance limit
expect_error(ml <- maxLik( llf, start = startVal, tol=c(1,2)),
pattern="'tol' must be of length 1, not 2")
expect_error(ml <- maxLik( llf, start = startVal, control=list(tol=c(1,2))),
pattern="'tol' must be of length 1, not 2")
expect_error(ml <- maxLik( llf, start = startVal, tol=TRUE),
pattern="object of class \"logical\" is not valid for slot 'tol'")
expect_error(ml <- maxLik( llf, start = startVal, control=list(tol=TRUE)),
pattern="object of class \"logical\" is not valid for slot 'tol'")
## ----- reltol: play w/reltol, leave other tolerances at default value -----
expect_silent(mlRelTol <- maxLik( llf, start = startVal, reltol=1))
expect_equal(returnCode(mlRelTol), 8)
mlRelTolC <- maxLik(llf, start=startVal, control=list(reltol=1))
expect_equal(coef(mlRelTol), coef(mlRelTolC))
expect_silent(ml0 <- maxLik( llf, start = startVal, reltol=0))
expect_true(nIter(ml0) > nIter(mlRelTol))
# switching off reltol makes more iterations
expect_silent(ml1 <- maxLik( llf, start = startVal, reltol=-1))
expect_equal(nIter(ml0), nIter(ml1))
expect_error(ml <- maxLik( llf, start = startVal, reltol=c(1,2)),
pattern="invalid class \"MaxControl\" object: 'reltol' must be of length 1, not 2")
expect_error(ml <- maxLik( llf, start = startVal, control=list(reltol=c(1,2))),
pattern="invalid class \"MaxControl\" object: 'reltol' must be of length 1, not 2")
expect_error(ml <- maxLik( llf, start = startVal, reltol=TRUE),
pattern="assignment of an object of class \"logical\" is not valid for slot 'reltol'")
expect_error(ml <- maxLik( llf, start = startVal, control=list(reltol=TRUE)),
pattern="assignment of an object of class \"logical\" is not valid for slot 'reltol'")
## gradtol
expect_silent(mlGradtol <- maxLik( llf, start = startVal, gradtol=0.1))
expect_equal(returnCode(mlGradtol), 1)
mlGradtolC <- maxLik(llf, start=startVal, control=list(gradtol=0.1))
expect_equal(coef(mlGradtol), coef(mlGradtolC))
expect_silent(ml <- maxLik( llf, start = startVal, gradtol=-1))
expect_true(nIter(ml) > nIter(mlGradtol))
# switching off gradtol makes more iterations
expect_error(ml <- maxLik( llf, start = startVal, gradtol=c(1,2)),
pattern="object: 'gradtol' must be of length 1, not 2")
expect_error(ml <- maxLik( llf, start = startVal, control=list(gradtol=c(1,2))),
pattern="object: 'gradtol' must be of length 1, not 2")
expect_error(ml <- maxLik( llf, start = startVal, gradtol=TRUE),
pattern="assignment of an object of class \"logical\" is not valid for slot 'gradtol' ")
expect_error(ml <- maxLik( llf, start = startVal, control=list(gradtol=TRUE)),
pattern="assignment of an object of class \"logical\" is not valid for slot 'gradtol' ")
## examples with steptol, lambdatol
## qac
expect_silent(mlMarq <- maxLik( llf, start = startVal, qac="marquardt"))
expect_equal(maximType(mlMarq),
"Newton-Raphson maximisation with Marquardt (1963) Hessian correction")
expect_silent(mlMarqC <- maxLik(llf, start=startVal, control=list(qac="marquardt")))
expect_equal(coef(mlMarq), coef(mlMarqC))
expect_error(ml <- maxLik( llf, start = startVal, qac=-1),
pattern = "assignment of an object of class \"numeric\" is not valid for slot 'qac'")
# qac should be "stephalving" or "marquardt"
expect_error(ml <- maxLik( llf, start = startVal, qac=c("a", "b")),
pattern = "invalid class \"MaxControl\" object: 'qac' must be of length 1, not 2")
expect_error(ml <- maxLik( llf, start = startVal, qac=TRUE),
pattern = "assignment of an object of class \"logical\" is not valid for slot 'qac'")
mlMarqCl <- maxLik(llf, start = startVal,
control=list(qac="marquardt", lambda0=1000, lambdaStep=4))
expect_equal(coef(mlMarqCl), coef(mlMarq))
## NM: alpha, beta, gamma
expect_silent(mlNMAlpha <- maxLik(llf, start=startVal, method="nm", beta=0.8))
expect_silent(mlNMAlphaC <- maxLik(llf, start=startVal, method="nm", control=list(beta=0.8)))
expect_equal(coef(mlNMAlpha), coef(mlNMAlphaC))
## likelihood function with additional parameter
llf1 <- function( param, sigma ) {
mu <- param
N <- length( x )
ll <- -0.5*N*log( 2 * pi ) - N*log( sigma ) -
0.5*sum( ( x - mu )^2/sigma^2 )
ll
}
## log-lik mixture
logLikMix <- function(param) {
rho <- param[1]
if(rho < 0 || rho > 1)
return(NA)
mu1 <- param[2]
mu2 <- param[3]
ll <- log(rho*dnorm(x - mu1) + (1 - rho)*dnorm(x - mu2))
ll
}
## loglik mixture with additional parameter
logLikMixA <- function(param, rho) {
mu1 <- param[1]
mu2 <- param[2]
ll <- log(rho*dnorm(x - mu1) + (1 - rho)*dnorm(x - mu2))
ll
}
## Test the following with all the main optimizers:
pl2Patterns <- c(NR = "----- Initial parameters: -----\n.*-----Iteration 1 -----",
BFGS = "initial value.*final value",
BFGSR = "-------- Initial parameters: -------\n.*Iteration 1")
for(method in c("NR", "BFGS", "BFGSR")) {
## create data in loop, we need to mess with 'x' for constraints
N <- 100
x <- rnorm(N, 1, 2 )
startVal <- c(1,2)
## two parameters at the same time
## iterlim, printLevel
expect_stdout(ml2 <- maxLik(llf, start=startVal, method=method,
iterlim=1, printLevel=2),
pattern = pl2Patterns[method])
expect_stdout(ml2C <- maxLik(llf, start=startVal, method=method,
control=list(iterlim=1, printLevel=2)),
pattern = pl2Patterns[method])
expect_equal(coef(ml2), coef(ml2C))
## what about additional parameters for the loglik function?
expect_silent(mlsM <- maxLik(llf1, start=0, method=method, tol=1, sigma=1))
expect_silent(mlsCM <- maxLik(llf1, start=0, method=method, control=list(tol=1), sigma=1))
expect_equal(coef(mlsM), coef(mlsCM))
## And what about unused parameters?
expect_error(maxLik(llf1, start=0, method=method, control=list(tol=1),
sigma=1, unusedPar=2),
pattern = "unused argument")
N <- 100
## Does this work with constraints?
x <- c(rnorm(N, mean=-1), rnorm(N, mean=1))
## First test inequality constraints
## Inequality constraints: x + y + z < 0.5
A <- matrix(c(-1, 0, 0,
0, -1, 0,
0, 0, 1), 3, 3, byrow=TRUE)
B <- rep(0.5, 3)
start <- c(0.4, 0, 0.9)
## analytic gradient
if(!(method %in% c("NR", "BFGSR"))) {
expect_silent(mix <- maxLik(logLikMix,
start=start, method=method,
constraints=list(ineqA=A, ineqB=B)))
expect_silent(mixGT <- try(maxLik(logLikMix,
start=start, method=method,
constraints=list(ineqA=A, ineqB=B),
tol=1)))
expect_silent(
mixGTC <- try(maxLik(logLikMix,
start=start, method=method,
constraints=list(ineqA=A, ineqB=B),
control=list(tol=1)))
)
## 2d inequality constraints: x + y < 0.5
A2 <- matrix(c(-1, -1), 1, 2, byrow=TRUE)
B2 <- 0.5
start2 <- c(-0.5, 0.5)
expect_silent(
mixA <- maxLik(logLikMixA,
start=start2, method=method,
constraints=list(ineqA=A2, ineqB=B2),
tol=1,
rho=0.5)
)
expect_silent(
mixAC <- maxLik(logLikMixA,
start=start2, method=method,
constraints=list(ineqA=A2, ineqB=B2),
control=list(tol=1),
rho=0.5)
)
expect_equal(coef(mixA), coef(mixAC))
expect_equal(hessian(mixA), hessian(mixAC))
}
}
### Test adding both default and user-specified parameters through control list
estimate <- function(control=NULL, ...) {
maxLik(llf, start=c(1,1),
control=c(list(iterlim=100), control),
...)
}
expect_silent(m <- estimate(control=list(iterlim=1), fixed=2))
expect_stdout(show(maxControl(m)),
pattern = "iterlim = 1")
# iterlim should be 1
expect_equal(coef(m)[2], 1)
# sigma should be 1.000
## Does print.level overwrite 'printLevel'?
expect_silent(m <- estimate(control=list(printLevel=2, print.level=1)))
expect_stdout(show(maxControl(m)),
pattern = "printLevel = 1")
## Does open parameters override everything?
expect_silent(m <- estimate(control=list(printLevel=2, print.level=1), print.level=0))
expect_stdout(show(maxControl(m)),
pattern = "printLevel = 0")
### does both printLevel, print.level work for condiNumber?
expect_silent(condiNumber(hessian(m), print.level=0))
expect_silent(condiNumber(hessian(m), printLevel=0))
expect_silent(condiNumber(hessian(m), printLevel=0, print.level=1))
|