File: test-parameters.R

package info (click to toggle)
r-cran-maxlik 1.5-2.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,676 kB
  • sloc: sh: 39; makefile: 2
file content (239 lines) | stat: -rw-r--r-- 10,572 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

### Test battery for various optimization parameters for different optimizers.
###
### ...
### 
library(maxLik)
library(tinytest)

tol <- .Machine$double.eps^(0.25)
set.seed( 123 )
# generate a variable from normally distributed random numbers
N <- 50
x <- rnorm(N, 1, 2 )

## log likelihood function
llf <- function( param ) {
   mu <- param[ 1 ]
   sigma <- param[ 2 ]
   if(!(sigma > 0))
       return(NA)
                           # to avoid warnings in the output
   N <- length( x )
   llValue <- -0.5 * N * log( 2 * pi ) - N * log( sigma ) -
      0.5 * sum( ( x - mu )^2 / sigma^2 )
   return( llValue )
}

# start values
startVal <- c( mu = 0, sigma = 1 )

# 
expect_silent(ml <- maxLik( llf, start = startVal ))
expect_equivalent(coef(ml), c(1.069, 1.833), tolerance=tol)
## tol
expect_silent(mlTol <- maxLik( llf, start = startVal, tol=1))
expect_equal(returnCode(mlTol), 2)
                           # tolerance limit
expect_silent(mlTolC <- maxLik(llf, start=startVal, control=list(tol=1)))
expect_equal(coef(mlTol), coef(mlTolC))
expect_equal(hessian(mlTol), hessian(mlTolC))
expect_equal(returnCode(mlTol), returnCode(mlTolC))
expect_silent(ml <- maxLik( llf, start = startVal, tol=-1))
                           # negative tol switches tol off
expect_silent(ml <- maxLik( llf, start = startVal, control=list(tol=-1)))
expect_false(returnCode(ml) == 2)
                           # should not be w/in tolerance limit
expect_error(ml <- maxLik( llf, start = startVal, tol=c(1,2)),
             pattern="'tol' must be of length 1, not 2")
expect_error(ml <- maxLik( llf, start = startVal, control=list(tol=c(1,2))),
             pattern="'tol' must be of length 1, not 2")
expect_error(ml <- maxLik( llf, start = startVal, tol=TRUE),
             pattern="object of class \"logical\" is not valid for slot 'tol'")
expect_error(ml <- maxLik( llf, start = startVal, control=list(tol=TRUE)),
             pattern="object of class \"logical\" is not valid for slot 'tol'")

## ----- reltol: play w/reltol, leave other tolerances at default value -----
expect_silent(mlRelTol <- maxLik( llf, start = startVal, reltol=1))
expect_equal(returnCode(mlRelTol), 8)
mlRelTolC <- maxLik(llf, start=startVal, control=list(reltol=1))
expect_equal(coef(mlRelTol), coef(mlRelTolC))
expect_silent(ml0 <- maxLik( llf, start = startVal, reltol=0))
expect_true(nIter(ml0) > nIter(mlRelTol))
                           # switching off reltol makes more iterations
expect_silent(ml1 <- maxLik( llf, start = startVal, reltol=-1))
expect_equal(nIter(ml0), nIter(ml1))
expect_error(ml <- maxLik( llf, start = startVal, reltol=c(1,2)),
             pattern="invalid class \"MaxControl\" object: 'reltol' must be of length 1, not 2")
expect_error(ml <- maxLik( llf, start = startVal, control=list(reltol=c(1,2))),
             pattern="invalid class \"MaxControl\" object: 'reltol' must be of length 1, not 2")
expect_error(ml <- maxLik( llf, start = startVal, reltol=TRUE),
             pattern="assignment of an object of class \"logical\" is not valid for slot 'reltol'")
expect_error(ml <- maxLik( llf, start = startVal, control=list(reltol=TRUE)),
             pattern="assignment of an object of class \"logical\" is not valid for slot 'reltol'")
## gradtol
expect_silent(mlGradtol <- maxLik( llf, start = startVal, gradtol=0.1))
expect_equal(returnCode(mlGradtol), 1)
mlGradtolC <- maxLik(llf, start=startVal, control=list(gradtol=0.1))
expect_equal(coef(mlGradtol), coef(mlGradtolC))
expect_silent(ml <- maxLik( llf, start = startVal, gradtol=-1))
expect_true(nIter(ml) > nIter(mlGradtol))
                           # switching off gradtol makes more iterations
expect_error(ml <- maxLik( llf, start = startVal, gradtol=c(1,2)),
             pattern="object: 'gradtol' must be of length 1, not 2")
expect_error(ml <- maxLik( llf, start = startVal, control=list(gradtol=c(1,2))),
             pattern="object: 'gradtol' must be of length 1, not 2")
expect_error(ml <- maxLik( llf, start = startVal, gradtol=TRUE),
             pattern="assignment of an object of class \"logical\" is not valid for slot 'gradtol' ")
expect_error(ml <- maxLik( llf, start = startVal, control=list(gradtol=TRUE)),
             pattern="assignment of an object of class \"logical\" is not valid for slot 'gradtol' ")
## examples with steptol, lambdatol
## qac
expect_silent(mlMarq <- maxLik( llf, start = startVal, qac="marquardt"))
expect_equal(maximType(mlMarq),
             "Newton-Raphson maximisation with Marquardt (1963) Hessian correction")
expect_silent(mlMarqC <- maxLik(llf, start=startVal, control=list(qac="marquardt")))
expect_equal(coef(mlMarq), coef(mlMarqC))
expect_error(ml <- maxLik( llf, start = startVal, qac=-1),
             pattern = "assignment of an object of class \"numeric\" is not valid for slot 'qac'")
                           # qac should be "stephalving" or "marquardt"
expect_error(ml <- maxLik( llf, start = startVal, qac=c("a", "b")),
             pattern = "invalid class \"MaxControl\" object: 'qac' must be of length 1, not 2")
expect_error(ml <- maxLik( llf, start = startVal, qac=TRUE),
             pattern = "assignment of an object of class \"logical\" is not valid for slot 'qac'")
mlMarqCl <- maxLik(llf, start = startVal,
                        control=list(qac="marquardt", lambda0=1000, lambdaStep=4))
expect_equal(coef(mlMarqCl), coef(mlMarq))
## NM: alpha, beta, gamma
expect_silent(mlNMAlpha <- maxLik(llf, start=startVal, method="nm", beta=0.8))
expect_silent(mlNMAlphaC <- maxLik(llf, start=startVal, method="nm", control=list(beta=0.8)))
expect_equal(coef(mlNMAlpha), coef(mlNMAlphaC))

## likelihood function with additional parameter
llf1 <- function( param, sigma ) {
   mu <- param
   N <- length( x )
   ll <- -0.5*N*log( 2 * pi ) - N*log( sigma ) -
      0.5*sum( ( x - mu )^2/sigma^2 )
   ll
}

## log-lik mixture
logLikMix <- function(param) {
   rho <- param[1]
   if(rho < 0 || rho > 1)
       return(NA)
   mu1 <- param[2]
   mu2 <- param[3]
   ll <- log(rho*dnorm(x - mu1) + (1 - rho)*dnorm(x - mu2))
   ll
}

## loglik mixture with additional parameter
logLikMixA <- function(param, rho) {
   mu1 <- param[1]
   mu2 <- param[2]
   ll <- log(rho*dnorm(x - mu1) + (1 - rho)*dnorm(x - mu2))
   ll
}

## Test the following with all the main optimizers:
pl2Patterns <- c(NR = "----- Initial parameters: -----\n.*-----Iteration 1 -----",
                 BFGS = "initial  value.*final  value",
                 BFGSR = "-------- Initial parameters: -------\n.*Iteration  1")
for(method in c("NR", "BFGS", "BFGSR")) {
   ## create data in loop, we need to mess with 'x' for constraints
   N <- 100
   x <- rnorm(N, 1, 2 )
   startVal <- c(1,2)
   ## two parameters at the same time
   ## iterlim, printLevel
   expect_stdout(ml2 <- maxLik(llf, start=startVal, method=method,
                               iterlim=1, printLevel=2),
                 pattern = pl2Patterns[method])
   expect_stdout(ml2C <- maxLik(llf, start=startVal, method=method,
                                control=list(iterlim=1, printLevel=2)),
                 pattern = pl2Patterns[method])
   expect_equal(coef(ml2), coef(ml2C))
   ## what about additional parameters for the loglik function?
   expect_silent(mlsM <- maxLik(llf1, start=0, method=method, tol=1, sigma=1))
   expect_silent(mlsCM <- maxLik(llf1, start=0, method=method, control=list(tol=1), sigma=1))
   expect_equal(coef(mlsM), coef(mlsCM))
   ## And what about unused parameters?
   expect_error(maxLik(llf1, start=0, method=method, control=list(tol=1),
                       sigma=1, unusedPar=2),
                pattern = "unused argument")
   N <- 100
   ## Does this work with constraints?
   x <- c(rnorm(N, mean=-1), rnorm(N, mean=1))
   ## First test inequality constraints
   ## Inequality constraints: x + y + z < 0.5
   A <- matrix(c(-1, 0, 0,
                 0, -1, 0,
                 0, 0, 1), 3, 3, byrow=TRUE)
   B <- rep(0.5, 3)
   start <- c(0.4, 0, 0.9)
   ## analytic gradient
   if(!(method %in% c("NR", "BFGSR"))) {
      expect_silent(mix <- maxLik(logLikMix, 
                                  start=start, method=method,
                                  constraints=list(ineqA=A, ineqB=B)))
      expect_silent(mixGT <- try(maxLik(logLikMix, 
                                        start=start, method=method,
                                        constraints=list(ineqA=A, ineqB=B),
                                        tol=1)))
      expect_silent(
         mixGTC <- try(maxLik(logLikMix, 
                              start=start, method=method,
                              constraints=list(ineqA=A, ineqB=B),
                              control=list(tol=1)))
      )
      ## 2d inequality constraints: x + y < 0.5
      A2 <- matrix(c(-1, -1), 1, 2, byrow=TRUE)
      B2 <- 0.5
      start2 <- c(-0.5, 0.5)
      expect_silent(
         mixA <- maxLik(logLikMixA, 
                        start=start2, method=method,
                        constraints=list(ineqA=A2, ineqB=B2),
                        tol=1,
                        rho=0.5)
      )
      expect_silent(
         mixAC <- maxLik(logLikMixA, 
                         start=start2, method=method,
                         constraints=list(ineqA=A2, ineqB=B2),
                         control=list(tol=1),
                         rho=0.5)
      )
      expect_equal(coef(mixA), coef(mixAC))
      expect_equal(hessian(mixA), hessian(mixAC))
   }
}

### Test adding both default and user-specified parameters through control list
estimate <- function(control=NULL, ...) {
   maxLik(llf, start=c(1,1),
          control=c(list(iterlim=100), control),
          ...)
}
expect_silent(m <- estimate(control=list(iterlim=1), fixed=2))
expect_stdout(show(maxControl(m)),
              pattern = "iterlim = 1")
                           # iterlim should be 1
expect_equal(coef(m)[2], 1)
                           # sigma should be 1.000
## Does print.level overwrite 'printLevel'?
expect_silent(m <- estimate(control=list(printLevel=2, print.level=1)))
expect_stdout(show(maxControl(m)),
              pattern = "printLevel = 1")

## Does open parameters override everything?
expect_silent(m <- estimate(control=list(printLevel=2, print.level=1), print.level=0))
expect_stdout(show(maxControl(m)),
              pattern = "printLevel = 0")

### does both printLevel, print.level work for condiNumber?
expect_silent(condiNumber(hessian(m), print.level=0))
expect_silent(condiNumber(hessian(m), printLevel=0))
expect_silent(condiNumber(hessian(m), printLevel=0, print.level=1))