1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
mclogit.fit <- function(
y,
s,
w,
X,
dispersion=FALSE,
start=NULL,
offset=NULL,
control=mclogit.control()
){
nvar <- ncol(X)
nobs <- length(y)
if(!length(offset))
offset <- rep.int(0, nobs)
if(length(start)){
stopifnot(length(start)==ncol(X))
eta <- c(X%*%start) + offset
}
else
eta <- mclogitLinkInv(y,s,w)
pi <- mclogitP(eta,s)
dev.resids <- ifelse(y>0,
2*w*y*(log(y)-log(pi)),
0)
deviance <- sum(dev.resids)
if(length(start))
coef <- start
else coef <- NULL
converged <- FALSE
for(iter in 1:control$maxit){
y.star <- eta - offset + (y-pi)/pi
yP.star <- y.star - rowsum(pi*y.star,s)[s]
XP <- X - as.matrix(rowsum(pi*X,s))[s,,drop=FALSE]
ww <- w*pi
good <- ww > 0 & is.finite(yP.star)
wlsFit <- lm.wfit(x=XP[good,,drop=FALSE],y=yP.star[good],w=ww[good])
last.coef <- coef
coef <- wlsFit$coefficients
eta <- c(X%*%coef) + offset
pi <- mclogitP(eta,s)
last.deviance <- deviance
dev.resids <- ifelse(y>0,
2*w*y*(log(y)-log(pi)),
0)
deviance <- sum(dev.resids)
## check for divergence
boundary <- FALSE
if(!is.finite(deviance) || deviance > last.deviance && iter > 1){
if(is.null(last.coef))
stop("no valid set of coefficients has been found: please supply starting values", call. = FALSE)
warning("step size truncated due to divergence", call. = FALSE)
ii <- 1
while (!is.finite(deviance) || deviance > last.deviance){
if(ii > control$maxit)
stop("inner loop; cannot correct step size")
ii <- ii + 1
coef <- (coef + last.coef)/2
eta <- c(X %*% coef) + offset
pi <- mclogitP(eta,s)
dev.resids <- ifelse(y>0,2*w*y*(log(y)-log(pi)),0)
deviance <- sum(dev.resids)
}
boundary <- TRUE
if (control$trace)
cat("Step halved: new deviance =", deviance, "\n")
} ## inner loop
crit <- abs(deviance-last.deviance)/abs(0.1+deviance)
if(control$trace)
cat("\nIteration",iter,"- deviance =",deviance,"- criterion =",crit)
if(crit < control$eps){
converged <- TRUE
if(control$trace)
cat("\nconverged\n")
break
}
}
if (!converged) warning("algorithm did not converge",call.=FALSE)
if (boundary) warning("algorithm stopped at boundary value",call.=FALSE)
eps <- 10*.Machine$double.eps
if (any(pi < eps) || any(1-pi < eps))
warning("fitted probabilities numerically 0 occurred",call.=FALSE)
XP <- X - as.matrix(rowsum(pi*X,s))[s,,drop=FALSE]
ww <- w*pi
XWX <- crossprod(XP,ww*XP)
ntot <- length(y)
pi0 <- mclogitP(offset,s)
null.deviance <- sum(ifelse(y>0,
2*w*y*(log(y)-log(pi0)),
0))
resid.df <- length(y)-length(unique(s))
model.df <- ncol(X)
resid.df <- resid.df - model.df
ll <- mclogit.logLik(y,pi,w)
if(!isFALSE(dispersion)){
if(isTRUE(dispersion))
odisp.method <- "Afroz"
else
odisp.method <- match.arg(dispersion,
c("Afroz",
"Fletcher",
"Pearson",
"Deviance"))
phi <- mclogit.dispersion(y,w,s,pi,coef,
method=odisp.method)
}
else phi <- 1
return(list(
coefficients = drop(coef),
phi = phi,
linear.predictors = eta,
working.residuals = (y-pi)/pi,
response.residuals = y-pi,
df.residual = resid.df,
model.df = model.df,
fitted.values = pi,
deviance=deviance,
ll=ll,
deviance.residuals=dev.resids,
null.deviance=null.deviance,
iter = iter,
y = y,
s = s,
offset = offset,
converged = converged,
control=control,
information.matrix=XWX
))
}
mclogit.control <- function(
epsilon = 1e-08,
maxit = 25,
trace=TRUE
) {
if (!is.numeric(epsilon) || epsilon <= 0)
stop("value of epsilon must be > 0")
if (!is.numeric(maxit) || maxit <= 0)
stop("maximum number of iterations must be > 0")
list(epsilon = epsilon, maxit = maxit, trace = trace)
}
log.Det <- function(x) determinant(x,logarithm=TRUE)$modulus
mclogitP <- function(eta,s){
expeta <- exp(eta)
sum.expeta <- rowsum(expeta,s)
expeta/sum.expeta[s]
}
# mclogit.dev.resids <- function(y,p,w)
# ifelse(y>0,
# 2*w*y*(log(y)-log(p)),
# 0)
mclogit.logLik <- function(y,p,w) sum(w*y*log(p))
mclogitLinkInv <- function(y,s,w){
#n.alt <- tapply(y,s,length)
#c(log(sqrt(w)*y+1/n.alt[s])-log(w)/2)
n <- w*y+0.5
f <- n/(rowsum(n,s)[s])
log(f) - ave(log(f),s)
}
|