File: coordProj.Rd

package info (click to toggle)
r-cran-mclust 6.1.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,540 kB
  • sloc: fortran: 13,298; ansic: 201; sh: 4; makefile: 2
file content (146 lines) | stat: -rw-r--r-- 5,577 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
\name{coordProj}
\alias{coordProj}
\title{
  Coordinate projections of multidimensional data modeled by an MVN mixture.
}
\description{
  Plots coordinate projections given multidimensional data
  and parameters of an MVN mixture model for the data.
}
\usage{
coordProj(data, dimens = c(1,2), parameters = NULL, z = NULL,
          classification = NULL, truth = NULL, uncertainty = NULL, 
          what = c("classification", "error", "uncertainty"),
          addEllipses = TRUE, fillEllipses = mclust.options("fillEllipses"),
          symbols = NULL, colors = NULL, scale = FALSE, 
          xlim = NULL, ylim = NULL, cex = 1, PCH = ".", main = FALSE, \dots)
}
\arguments{
  \item{data}{
    A numeric matrix or data frame of observations.
    Categorical variables are not allowed.
    If a matrix or data frame, rows correspond to observations and
    columns correspond to variables.
  }
  \item{dimens}{
    A vector of length 2 giving the integer dimensions of the
    desired coordinate projections. The default is
    \code{c(1,2)}, in which the first
    dimension is plotted against the second.
  }
 \item{parameters}{
     A named list giving the parameters of an \emph{MCLUST} model, 
     used to produce superimposing ellipses on the plot. 
     The relevant components are as follows:
     \describe{
        \item{\code{mean}}{
              The mean for each component. If there is more than one component,
              this is a matrix whose kth column is the mean of the \emph{k}th
              component of the mixture model.
        }
        \item{\code{variance}}{
              A list of variance parameters for the model.
              The components of this list depend on the model
              specification. See the help file for \code{\link{mclustVariance}}
              for details.
        }
     }
  }
 \item{z}{
  A matrix in which the \code{[i,k]}th entry gives the
  probability of observation \emph{i} belonging to the \emph{k}th class. 
  Used to compute \code{classification} and
  \code{uncertainty} if those arguments aren't available.
  }
  \item{classification}{
  A numeric or character vector representing a classification of
  observations (rows) of \code{data}. If present argument \code{z}
        will be ignored.
  }
  \item{truth}{
  A numeric or character vector giving a known
  classification of each data point.
  If \code{classification}
  or \code{z} is also present, 
  this is used for displaying classification errors.
  }
  \item{uncertainty}{
        A numeric vector of values in \emph{(0,1)} giving the
  uncertainty of each data point. If present argument \code{z}
        will be ignored.
  }
  \item{what}{
    Choose from one of the following three options: \code{"classification"}
    (default), \code{"error"}, \code{"uncertainty"}. 
  }
  \item{addEllipses}{
    A logical indicating whether or not to add ellipses with axes 
    corresponding to the within-cluster covariances in case of 
    \code{"classification"} or \code{"uncertainty"} plots. 
  }
  \item{fillEllipses}{
    A logical specifying whether or not to fill ellipses with transparent
    colors when \code{addEllipses = TRUE}.
  }
  \item{symbols}{
    Either an integer or character vector assigning a plotting symbol to each
    unique class in \code{classification}. Elements in \code{colors}
    correspond to classes in order of appearance in the sequence of
    observations (the order used by the function \code{unique}). 
    The default is given by \code{mclust.options("classPlotSymbols")}.
  }
  \item{colors}{
    Either an integer or character vector assigning a color to each
    unique class in \code{classification}. Elements in \code{colors}
    correspond to classes in order of appearance in the sequence of
    observations (the order used by the function \code{unique}). 
    The default is given by \code{mclust.options("classPlotColors")}.
  }
  \item{scale}{
    A logical variable indicating whether or not the two chosen
    dimensions should be plotted on the same scale, and
    thus preserve the shape of the distribution.
    Default: \code{scale=FALSE} 
  }
  \item{xlim, ylim}{
    Arguments specifying bounds for the ordinate, abscissa of the plot.
    This may be useful for when comparing plots.
  }
  \item{cex}{
    A numerical value specifying the size of the plotting symbols. 
    The default value is 1.
  }
  \item{PCH}{
    An argument specifying the symbol to be used when a classification
    has not been specified for the data. The default value is a small dot ".".
  }
  \item{main}{
    A logical variable or \code{NULL} indicating whether or not to add a title to
    the plot identifying the dimensions used.
  }
  \item{\dots}{
    Other graphics parameters.
  }
}
\value{
  A plot showing a two-dimensional coordinate projection of the data, together with the location of the  mixture components, classification, uncertainty, and/or classification errors.
}
\seealso{
  \code{\link{clPairs}},
  \code{\link{randProj}},
  \code{\link{mclust2Dplot}},
  \code{\link{mclust.options}}
}
\examples{
\donttest{
est <- meVVV(iris[,-5], unmap(iris[,5]))
par(pty = "s", mfrow = c(1,1))
coordProj(iris[,-5], dimens=c(2,3), parameters = est$parameters, z = est$z,
          what = "classification", main = TRUE) 
coordProj(iris[,-5], dimens=c(2,3), parameters = est$parameters, z = est$z,
          truth = iris[,5], what = "error", main = TRUE) 
coordProj(iris[,-5], dimens=c(2,3), parameters = est$parameters, z = est$z,
          what = "uncertainty", main = TRUE) 
}
}
\keyword{cluster}