File: em.Rd

package info (click to toggle)
r-cran-mclust 6.1.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,540 kB
  • sloc: fortran: 13,298; ansic: 201; sh: 4; makefile: 2
file content (153 lines) | stat: -rw-r--r-- 5,149 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
\name{em}
\alias{em}

\title{EM algorithm starting with E-step for parameterized Gaussian mixture models}

\description{
  Implements the EM algorithm for parameterized Gaussian mixture models,
  starting with the expectation step.
}
\usage{
em(data, modelName, parameters, prior = NULL, control = emControl(),
   warn = NULL, \dots)
}
\arguments{
  \item{data}{
    A numeric vector, matrix, or data frame of observations. Categorical
    variables are not allowed. If a matrix or data frame, rows
    correspond to observations and columns correspond to variables. 
   }
  \item{modelName}{
    A character string indicating the model. The help file for
    \code{\link{mclustModelNames}} describes the available models.
  }
  \item{parameters}{
     A names list giving the parameters of the model.
     The components are as follows:
     \describe{
         \item{\code{pro}}{
               Mixing proportions for the components of the mixture. 
               If the model includes a Poisson term for noise, there 
               should be one more mixing proportion than the number 
               of Gaussian components.
        }
        \item{\code{mean}}{
              The mean for each component. If there is more than one component,
              this is a matrix whose kth column is the mean of the \emph{k}th
              component of the mixture model.
        }
       \item{\code{variance}}{
              A list of variance parameters for the model.
              The components of this list depend on the model
              specification. See the help file for \code{\link{mclustVariance}}
              for details.
        }
        \item{\code{Vinv}}{
              An estimate of the reciprocal hypervolume of the data region.
              If set to NULL or a negative value, the default is determined by 
              applying function \code{hypvol} to the data.
              Used only when \code{pro} includes an additional
              mixing proportion for a noise component.
        }
     }
  }
 \item{prior}{
      Specification of a conjugate prior on the means and variances.
      The default assumes no prior.
 }
 \item{control}{
       A list of control parameters for EM. The defaults are set by the call 
       \code{emControl()}.
 }
 \item{warn}{
    A logical value indicating whether or not a warning should be issued
    when computations fail. The default is \code{warn=FALSE}.
  }
 \item{\dots}{
    Catches unused arguments in indirect or list calls via \code{do.call}.
  }
}
\value{
A list including the following components: 
  \item{modelName}{
    A character string identifying the model (same as the input argument).
  }
  \item{n}{
    The number of observations in the data.
  }
  \item{d}{
    The dimension of the data.
  }
  \item{G}{
    The number of mixture components.
  }  
  \item{z}{
    A matrix whose \code{[i,k]}th entry is the
    conditional probability of the \emph{i}th observation belonging to
    the \emph{k}th component of the mixture.  
  }
  \item{parameters}{
     \describe{
        \item{\code{pro}}{
              A vector whose \emph{k}th component is the mixing proportion for 
              the \emph{k}th component of the mixture model.
              If the model includes a Poisson term for noise, there 
              should be one more mixing proportion than the number 
              of Gaussian components.
        }
        \item{\code{mean}}{
              The mean for each component. If there is more than one component,
              this is a matrix whose kth column is the mean of the \emph{k}th 
              component of the mixture model. 
        }
        \item{\code{variance}}{
              A list of variance parameters for the model.
              The components of this list depend on the model
              specification. See the help file for \code{\link{mclustVariance}} 
              for details.  
        }
        \item{\code{Vinv}}{
              The estimate of the reciprocal hypervolume of the data region
              used in the computation when the input indicates the
              addition of a noise component to the model.
        }
      }
  }
  \item{loglik}{
    The log likelihood for the data in the mixture model. 
  }
  \item{control}{
     The list of control parameters for EM used.
  }
  \item{prior}{
     The specification of a conjugate prior on the means and variances used,
     \code{NULL} if no prior is used.
  }        
  \item{Attributes:}{
      \code{"info"} Information on the iteration.\cr
      \code{"WARNING"} An appropriate warning if problems are 
      encountered in the computations.
    }
}
\seealso{
  \code{\link{emE}}, \dots,
  \code{\link{emVVV}},
  \code{\link{estep}},
  \code{\link{me}},
  \code{\link{mstep}},
  \code{\link{mclust.options}},
  \code{\link{do.call}}
}
\examples{
\donttest{
msEst <- mstep(modelName = "EEE", data = iris[,-5], 
               z = unmap(iris[,5]))
names(msEst)

em(modelName = msEst$modelName, data = iris[,-5],
   parameters = msEst$parameters)

do.call("em", c(list(data = iris[,-5]), msEst))   ## alternative call
}
}
\keyword{cluster}