File: mclust1Dplot.Rd

package info (click to toggle)
r-cran-mclust 6.1.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,540 kB
  • sloc: fortran: 13,298; ansic: 201; sh: 4; makefile: 2
file content (146 lines) | stat: -rw-r--r-- 5,165 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
\name{mclust1Dplot}
\alias{mclust1Dplot}
\title{
  Plot one-dimensional data modeled by an MVN mixture.
}
\description{
  Plot one-dimensional data given parameters of an MVN mixture model 
  for the data.
}
\usage{
mclust1Dplot(data, parameters = NULL, z = NULL, 
             classification = NULL, truth = NULL, uncertainty = NULL, 
             what = c("classification", "density", "error", "uncertainty"),
             symbols = NULL, colors = NULL, ngrid = length(data), 
             xlab = NULL, ylab = NULL, 
             xlim = NULL, ylim = NULL,
             cex = 1, main = FALSE, \dots)
}
\arguments{
  \item{data}{
    A numeric vector of observations.
    Categorical variables are not allowed.
  }
 \item{parameters}{
     A named list giving the parameters of an \emph{MCLUST} model,
     used to produce superimposing ellipses on the plot.
     The relevant components are as follows:
     \describe{
        \item{\code{pro}}{
              Mixing proportions for the components of the mixture. 
              There should one more mixing proportion than the number of 
              Gaussian components if the mixture model includes 
              a Poisson noise term.
        }
        \item{\code{mean}}{
              The mean for each component. If there is more than one component,
              this is a matrix whose kth column is the mean of the \emph{k}th
              component of the mixture model.
        }
        \item{\code{variance}}{
              A list of variance parameters for the model.
              The components of this list depend on the model
              specification. See the help file for \code{\link{mclustVariance}}
              for details.
        }
     }
  }
\item{z}{
        A matrix in which the \code{[i,k]}th entry gives the
        probability of observation \emph{i} belonging to the \emph{k}th class.
        Used to compute \code{classification} and
        \code{uncertainty} if those arguments aren't available.
  }
\item{classification}{
        A numeric or character vector representing a classification of
        observations (rows) of \code{data}. If present argument \code{z}
        will be ignored.
  }
  \item{truth}{
        A numeric or character vector giving a known
        classification of each data point.
        If \code{classification} or \code{z} is also present,
        this is used for displaying classification errors.
  }
  \item{uncertainty}{
        A numeric vector of values in \emph{(0,1)} giving the
        uncertainty of each data point. If present argument \code{z}
        will be ignored.
  }
  \item{what}{
    Choose from one of the following options: \code{"classification"}
    (default), \code{"density"}, \code{"error"}, \code{"uncertainty"}.
  }
  \item{symbols}{
    Either an integer or character vector assigning a plotting symbol to
    each unique class \code{classification}. Elements in \code{symbols}
    correspond to classes in \code{classification} in order of
    appearance in the observations (the order used by the 
    function \code{unique}). The default is to use a single plotting
    symbol \emph{|}. Classes are delineated by showing them in separate
    lines above the whole of the data.
  }
  \item{colors}{
    Either an integer or character vector assigning a color to each
    unique class \code{classification}. Elements in \code{colors}
    correspond to classes in order of appearance in the observations 
    (the order used by the function \code{unique}).
    The default is given is \code{mclust.options("classPlotColors")}.
  }
  \item{ngrid}{
    Number of grid points to use for density computation over the interval
    spanned by the data. The default is the length of the data set.
  }
  \item{xlab, ylab}{
    An argument specifying a label for the axes.
  }
  \item{xlim, ylim}{
    An argument specifying bounds of the plot.
    This may be useful for when comparing plots.
  }
  \item{cex}{
    An argument specifying the size of the plotting symbols. 
    The default value is 1.
  }
  \item{main}{
    A logical variable or \code{NULL} indicating whether or not to add a title
    to the plot identifying the dimensions used.
  }
\item{\dots}{
    Other graphics parameters.
  }
}
\value{
  A plot showing location of the mixture components, classification, uncertainty, density and/or classification errors. Points in the different classes are shown in separated levels above the whole of the data.
}

\seealso{
  \code{\link{mclust2Dplot}},
  \code{\link{clPairs}},
  \code{\link{coordProj}}
}
\examples{
\donttest{
n <- 250 ## create artificial data
set.seed(1)
y <- c(rnorm(n,-5), rnorm(n,0), rnorm(n,5))
yclass <- c(rep(1,n), rep(2,n), rep(3,n))

yModel <- Mclust(y)

mclust1Dplot(y, parameters = yModel$parameters, z = yModel$z, 
             what = "classification")

mclust1Dplot(y, parameters = yModel$parameters, z = yModel$z, 
             what = "error", truth = yclass)

mclust1Dplot(y, parameters = yModel$parameters, z = yModel$z, 
             what = "density")

mclust1Dplot(y, z = yModel$z, parameters = yModel$parameters,
            what = "uncertainty")

}
}
\keyword{cluster}