1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
|
\name{mclust1Dplot}
\alias{mclust1Dplot}
\title{
Plot one-dimensional data modeled by an MVN mixture.
}
\description{
Plot one-dimensional data given parameters of an MVN mixture model
for the data.
}
\usage{
mclust1Dplot(data, parameters = NULL, z = NULL,
classification = NULL, truth = NULL, uncertainty = NULL,
what = c("classification", "density", "error", "uncertainty"),
symbols = NULL, colors = NULL, ngrid = length(data),
xlab = NULL, ylab = NULL,
xlim = NULL, ylim = NULL,
cex = 1, main = FALSE, \dots)
}
\arguments{
\item{data}{
A numeric vector of observations.
Categorical variables are not allowed.
}
\item{parameters}{
A named list giving the parameters of an \emph{MCLUST} model,
used to produce superimposing ellipses on the plot.
The relevant components are as follows:
\describe{
\item{\code{pro}}{
Mixing proportions for the components of the mixture.
There should one more mixing proportion than the number of
Gaussian components if the mixture model includes
a Poisson noise term.
}
\item{\code{mean}}{
The mean for each component. If there is more than one component,
this is a matrix whose kth column is the mean of the \emph{k}th
component of the mixture model.
}
\item{\code{variance}}{
A list of variance parameters for the model.
The components of this list depend on the model
specification. See the help file for \code{\link{mclustVariance}}
for details.
}
}
}
\item{z}{
A matrix in which the \code{[i,k]}th entry gives the
probability of observation \emph{i} belonging to the \emph{k}th class.
Used to compute \code{classification} and
\code{uncertainty} if those arguments aren't available.
}
\item{classification}{
A numeric or character vector representing a classification of
observations (rows) of \code{data}. If present argument \code{z}
will be ignored.
}
\item{truth}{
A numeric or character vector giving a known
classification of each data point.
If \code{classification} or \code{z} is also present,
this is used for displaying classification errors.
}
\item{uncertainty}{
A numeric vector of values in \emph{(0,1)} giving the
uncertainty of each data point. If present argument \code{z}
will be ignored.
}
\item{what}{
Choose from one of the following options: \code{"classification"}
(default), \code{"density"}, \code{"error"}, \code{"uncertainty"}.
}
\item{symbols}{
Either an integer or character vector assigning a plotting symbol to
each unique class \code{classification}. Elements in \code{symbols}
correspond to classes in \code{classification} in order of
appearance in the observations (the order used by the
function \code{unique}). The default is to use a single plotting
symbol \emph{|}. Classes are delineated by showing them in separate
lines above the whole of the data.
}
\item{colors}{
Either an integer or character vector assigning a color to each
unique class \code{classification}. Elements in \code{colors}
correspond to classes in order of appearance in the observations
(the order used by the function \code{unique}).
The default is given is \code{mclust.options("classPlotColors")}.
}
\item{ngrid}{
Number of grid points to use for density computation over the interval
spanned by the data. The default is the length of the data set.
}
\item{xlab, ylab}{
An argument specifying a label for the axes.
}
\item{xlim, ylim}{
An argument specifying bounds of the plot.
This may be useful for when comparing plots.
}
\item{cex}{
An argument specifying the size of the plotting symbols.
The default value is 1.
}
\item{main}{
A logical variable or \code{NULL} indicating whether or not to add a title
to the plot identifying the dimensions used.
}
\item{\dots}{
Other graphics parameters.
}
}
\value{
A plot showing location of the mixture components, classification, uncertainty, density and/or classification errors. Points in the different classes are shown in separated levels above the whole of the data.
}
\seealso{
\code{\link{mclust2Dplot}},
\code{\link{clPairs}},
\code{\link{coordProj}}
}
\examples{
\donttest{
n <- 250 ## create artificial data
set.seed(1)
y <- c(rnorm(n,-5), rnorm(n,0), rnorm(n,5))
yclass <- c(rep(1,n), rep(2,n), rep(3,n))
yModel <- Mclust(y)
mclust1Dplot(y, parameters = yModel$parameters, z = yModel$z,
what = "classification")
mclust1Dplot(y, parameters = yModel$parameters, z = yModel$z,
what = "error", truth = yclass)
mclust1Dplot(y, parameters = yModel$parameters, z = yModel$z,
what = "density")
mclust1Dplot(y, z = yModel$z, parameters = yModel$parameters,
what = "uncertainty")
}
}
\keyword{cluster}
|