1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
|
\name{mclustICL}
\alias{mclustICL}
\alias{print.mclustICL}
\alias{summary.mclustICL}
\alias{print.summary.mclustICL}
\title{ICL Criterion for Model-Based Clustering}
\description{
ICL (Integrated Complete-data Likelihood) for parameterized Gaussian mixture models fitted by EM algorithm initialized by model-based hierarchical clustering.
}
\usage{
mclustICL(data, G = NULL, modelNames = NULL,
initialization = list(hcPairs = NULL,
subset = NULL,
noise = NULL),
x = NULL, \dots)
\method{summary}{mclustICL}(object, G, modelNames, \dots)
}
\arguments{
\item{data}{
A numeric vector, matrix, or data frame of observations. Categorical
variables are not allowed. If a matrix or data frame, rows
correspond to observations and columns correspond to variables.
}
\item{G}{
An integer vector specifying the numbers of mixture components
(clusters) for which the criteria should be calculated.
The default is \code{G = 1:9}.
}
\item{modelNames}{
A vector of character strings indicating the models to be fitted
in the EM phase of clustering. The help file for
\code{\link{mclustModelNames}} describes the available models.
The default is:
\describe{
\item{\code{c("E", "V")}}{for univariate data}
\item{\code{mclust.options("emModelNames")}}{for multivariate data (n > d)}
\item{\code{c("EII", "VII", "EEI", "EVI", "VEI", "VVI")}}{the spherical and diagonal models for multivariate data (n <= d)}
}
}
\item{initialization}{
A list containing zero or more of the following components:
\describe{
\item{\code{hcPairs}}{
A matrix of merge pairs for hierarchical clustering such as produced
by function \code{hc}. For multivariate data, the default is to compute
a hierarchical clustering tree by applying function \code{hc} with
\code{modelName = "VVV"} to the data or a subset as indicated by the
\code{subset} argument.
The hierarchical clustering results are to start EM.
For univariate data, the default is to use quantiles to start EM.
}
\item{\code{subset}}{
A logical or numeric vector specifying a subset of the data
to be used in the initial hierarchical clustering phase.
}
}
}
\item{x}{
An object of class \code{'mclustICL'}. If supplied, \code{mclustICL}
will use the settings in \code{x} to produce another object of
class \code{'mclustICL'}, but with \code{G} and \code{modelNames}
as specified in the arguments. Models that have already been computed
in \code{x} are not recomputed. All arguments to \code{mclustICL}
except \code{data}, \code{G} and \code{modelName} are
ignored and their values are set as specified in the attributes of
\code{x}.
Defaults for \code{G} and \code{modelNames} are taken from \code{x}.
}
\item{\dots}{
Futher arguments used in the call to \code{\link{Mclust}}.
See also \code{\link{mclustBIC}}.
}
\item{object}{
An integer vector specifying the numbers of mixture components
(clusters) for which the criteria should be calculated.
The default is \code{G = 1:9}.
}
}
\value{
Returns an object of class \code{'mclustICL'} containing the the ICL criterion
for the specified mixture models and numbers of clusters.
The corresponding \code{print} method shows the matrix of values and the top models according to the ICL criterion. The \code{summary} method shows only the top models.
}
\references{
Biernacki, C., Celeux, G., Govaert, G. (2000).
Assessing a mixture model for clustering with the integrated completed likelihood.
\emph{IEEE Trans. Pattern Analysis and Machine Intelligence}, 22 (7), 719-725.
Scrucca L., Fop M., Murphy T. B. and Raftery A. E. (2016) mclust 5: clustering, classification and density estimation using Gaussian finite mixture models, \emph{The R Journal}, 8/1, pp. 289-317.
}
\seealso{
\code{\link{plot.mclustICL}},
\code{\link{Mclust}},
\code{\link{mclustBIC}},
\code{\link{mclustBootstrapLRT}},
\code{\link{bic}},
\code{\link{icl}}
}
\examples{
data(faithful)
faithful.ICL <- mclustICL(faithful)
faithful.ICL
summary(faithful.ICL)
plot(faithful.ICL)
\donttest{
# compare with
faithful.BIC <- mclustBIC(faithful)
faithful.BIC
plot(faithful.BIC)
}
}
\keyword{cluster}
|