1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
|
\name{plot.MclustSSC}
\alias{plot.MclustSSC}
\title{Plotting method for MclustSSC semi-supervised classification}
\description{
Plots for semi-supervised classification based on Gaussian finite mixture models.
}
\usage{
\method{plot}{MclustSSC}(x, what = c("BIC", "classification", "uncertainty"), \dots)
}
\arguments{
\item{x}{
An object of class \code{'MclustSSC'} resulting from a call to \code{\link{MclustSSC}}.
}
\item{what}{
A string specifying the type of graph requested. Available choices are:
\describe{
\item{\code{"BIC"} =}{plot of BIC values used for model selection, i.e. for choosing the model class covariances.}
\item{\code{"classification"} =}{a plot of data with points marked based on the known and the predicted classification.}
\item{\code{"uncertainty"} =}{a plot of classification uncertainty.}
}
If not specified, in interactive sessions a menu of choices is proposed.
}
\item{\dots}{further arguments passed to or from other methods. See \code{\link{plot.Mclust}}.}
}
%\value{}
%\details{}
\author{Luca Scrucca}
\seealso{
\code{\link{MclustSSC}}
}
\examples{
X <- iris[,1:4]
class <- iris$Species
# randomly remove class labels
set.seed(123)
class[sample(1:length(class), size = 120)] <- NA
table(class, useNA = "ifany")
clPairs(X, ifelse(is.na(class), 0, class),
symbols = c(0, 16, 17, 18), colors = c("grey", 4, 2, 3),
main = "Partially classified data")
# Fit semi-supervised classification model
mod_SSC <- MclustSSC(X, class)
summary(mod_SSC, parameters = TRUE)
pred_SSC <- predict(mod_SSC)
table(Predicted = pred_SSC$classification, Actual = class, useNA = "ifany")
plot(mod_SSC, what = "BIC")
plot(mod_SSC, what = "classification")
plot(mod_SSC, what = "uncertainty")
}
\keyword{multivariate}
|