1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
|
\name{predict.MclustDA}
\alias{predict.MclustDA}
\title{Classify multivariate observations by Gaussian finite mixture modeling}
\description{Classify multivariate observations based on Gaussian finite mixture models estimated by \code{\link{MclustDA}}.}
\usage{
\method{predict}{MclustDA}(object, newdata, prop = object$prop, \dots)
}
\arguments{
\item{object}{an object of class \code{'MclustDA'} resulting from a call to \code{\link{MclustDA}}.}
\item{newdata}{a data frame or matrix giving the data. If missing the train data obtained from the call to \code{\link{MclustDA}} are classified.}
\item{prop}{the class proportions or prior class probabilities to belong to each class; by default, this is set at the class proportions in the training data.}
\item{\dots}{further arguments passed to or from other methods.}
}
% \details{}
\value{
Returns a list of with the following components:
\item{classification}{a factor of predicted class labels for \code{newdata}.}
\item{z}{a matrix whose \emph{[i,k]}th entry is the probability that
observation \emph{i} in \code{newdata} belongs to the \emph{k}th class.}
}
\author{Luca Scrucca}
% \note{}
\seealso{\code{\link{MclustDA}}.}
\examples{
\donttest{
odd <- seq(from = 1, to = nrow(iris), by = 2)
even <- odd + 1
X.train <- iris[odd,-5]
Class.train <- iris[odd,5]
X.test <- iris[even,-5]
Class.test <- iris[even,5]
irisMclustDA <- MclustDA(X.train, Class.train)
predTrain <- predict(irisMclustDA)
predTrain
predTest <- predict(irisMclustDA, X.test)
predTest
}
}
\keyword{multivariate}
|