File: predict.densityMclust.Rd

package info (click to toggle)
r-cran-mclust 6.1.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,540 kB
  • sloc: fortran: 13,298; ansic: 201; sh: 4; makefile: 2
file content (48 lines) | stat: -rw-r--r-- 1,712 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
\name{predict.densityMclust}
\alias{predict.densityMclust}

\title{Density estimate of multivariate observations by Gaussian finite mixture modeling}

\description{Compute density estimation for multivariate observations based on Gaussian finite mixture models estimated by \code{\link{densityMclust}}.}

\usage{
  \method{predict}{densityMclust}(object, newdata, what = c("dens", "cdens", "z"), logarithm = FALSE, \dots)
}

\arguments{
  
  \item{object}{an object of class \code{'densityMclust'} resulting from a call to \code{\link{densityMclust}}.}

  \item{newdata}{a vector, a data frame or matrix giving the data. If missing the density is computed for the input data obtained from the call to \code{\link{densityMclust}}.}

  \item{what}{a character string specifying what to retrieve: \code{"dens"} returns a vector of values for the mixture density; \code{"cdens"} returns a matrix of component densities for each mixture component (along the columns); \code{"z"} returns a matrix of conditional probabilities of each data point to belong to a mixture component.}
  
  \item{logarithm}{A logical value indicating whether or not the logarithm of the density or component densities should be returned.}

  \item{\dots}{further arguments passed to or from other methods.}
}

% \details{}

\value{
Returns a vector or a matrix of densities evaluated at \code{newdata} depending on the argument \code{what} (see above).
}

\author{Luca Scrucca}

% \note{}

\seealso{\code{\link{Mclust}}.}

\examples{
\donttest{
x <- faithful$waiting
dens <- densityMclust(x, plot = FALSE)
x0 <- seq(50, 100, by = 10)
d0 <- predict(dens, x0)
plot(dens, what = "density")
points(x0, d0, pch = 20)
}
}

\keyword{multivariate}