1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
|
\name{priorControl}
\alias{priorControl}
\title{
Conjugate Prior for Gaussian Mixtures.
}
\description{
Specify a conjugate prior for Gaussian mixtures.
}
\usage{
priorControl(functionName = "defaultPrior", \dots)
}
\arguments{
\item{functionName}{
The name of the function specifying the conjugate prior.
By default the function \code{\link{defaultPrior}} is used, and this
can also be used as a template for alternative specification.
}
\item{\dots}{
Optional named arguments to the function specified in \code{functionName}
together with their values.
}
}
\value{
A list with the function name as the first component. The remaining
components (if any) consist of a list of arguments to the function
with assigned values.
}
\details{
The function \code{priorControl} is used to specify a conjugate prior
for EM within \emph{MCLUST}.\cr
Note that, as described in \code{\link{defaultPrior}}, in the multivariate
case only 10 out of 14 models may be used in conjunction with a prior, i.e.
those available in \emph{MCLUST} up to version 4.4.
}
\references{
C. Fraley and A. E. Raftery (2007).
Bayesian regularization for normal mixture estimation and model-based
clustering. \emph{Journal of Classification 24:155-181}.
}
\seealso{
\code{\link{mclustBIC}},
\code{\link{me}},
\code{\link{mstep}},
\code{\link{defaultPrior}}
}
\examples{
# default prior
irisBIC <- mclustBIC(iris[,-5], prior = priorControl())
summary(irisBIC, iris[,-5])
# no prior on the mean; default prior on variance
irisBIC <- mclustBIC(iris[,-5], prior = priorControl(shrinkage = 0))
summary(irisBIC, iris[,-5])
}
\keyword{cluster}
|