File: priorControl.Rd

package info (click to toggle)
r-cran-mclust 6.1.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,540 kB
  • sloc: fortran: 13,298; ansic: 201; sh: 4; makefile: 2
file content (55 lines) | stat: -rw-r--r-- 1,677 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
\name{priorControl}
\alias{priorControl}
\title{
  Conjugate Prior for Gaussian Mixtures.
}
\description{
   Specify a conjugate prior for Gaussian mixtures.
}
\usage{
priorControl(functionName = "defaultPrior", \dots) 
}
\arguments{
  \item{functionName}{
    The name of the function specifying the conjugate prior.
    By default the function \code{\link{defaultPrior}} is used, and this 
    can also be used as a template for alternative specification.  
  }
  \item{\dots}{
     Optional named arguments to the function specified in \code{functionName}
     together with their values.
    }
}
\value{
  A list with the function name as the first component. The remaining
  components (if any) consist of a list of arguments to the function
  with assigned values.
}
\details{
  The function \code{priorControl} is used to specify a conjugate prior  
  for EM within \emph{MCLUST}.\cr
  Note that, as described in \code{\link{defaultPrior}}, in the multivariate 
  case only 10 out of 14 models may be used in conjunction with a prior, i.e.
  those available in \emph{MCLUST} up to version 4.4.
}
\references{
  C. Fraley and A. E. Raftery (2007).
  Bayesian regularization for normal mixture estimation and model-based
  clustering. \emph{Journal of Classification 24:155-181}.
}
\seealso{
  \code{\link{mclustBIC}},
  \code{\link{me}},
  \code{\link{mstep}},
  \code{\link{defaultPrior}}
}
\examples{
# default prior
irisBIC <- mclustBIC(iris[,-5], prior = priorControl())
summary(irisBIC, iris[,-5])

# no prior on the mean; default prior on variance
irisBIC <- mclustBIC(iris[,-5], prior = priorControl(shrinkage = 0))
summary(irisBIC, iris[,-5])
}
\keyword{cluster}