File: summary.mclustBIC.Rd

package info (click to toggle)
r-cran-mclust 6.1.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,540 kB
  • sloc: fortran: 13,298; ansic: 201; sh: 4; makefile: 2
file content (125 lines) | stat: -rw-r--r-- 3,972 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
\name{summary.mclustBIC}
\alias{summary.mclustBIC}
\alias{print.summary.mclustBIC}
\alias{summary.mclustBIC}
\alias{summaryMclustBIC}
\alias{summaryMclustBICn}
\alias{printSummaryMclustBIC}
\alias{printSummaryMclustBICn}

\title{Summary function for model-based clustering via BIC}

\description{
  Optimal model characteristics and classification for model-based
  clustering via \code{mclustBIC}.
}
\usage{
\method{summary}{mclustBIC}(object, data, G, modelNames, \dots)
}
\arguments{
  \item{object}{
    An \code{'mclustBIC'} object, 
    which is the result of applying \code{mclustBIC} 
    to \code{data}.
  }
  \item{data}{
    The matrix or vector of observations used to generate `object'.
  }
 \item{G}{
    A vector of integers giving the numbers of mixture components (clusters)
    from which the best model according to BIC will be selected
   (\code{as.character(G)} must be a subset of the row names of
     \code{object}).
    The default is to select the best model for all numbers
    of mixture components used to obtain \code{object}.
  }
  \item{modelNames}{
    A vector of integers giving the model parameterizations
    from which the best model according to BIC will be selected
   (\code{as.character(model)} must be a subset of the column names of
     \code{object}).
    The default is to select the best model for parameterizations
    used to obtain \code{object}.
  }
  \item{\dots}{
    Not used. For generic/method consistency.
  }
}
\value{
 A list giving the optimal (according to BIC) parameters,
  conditional probabilities \code{z}, and log-likelihood,
  together with the associated classification and its uncertainty.

  The details of the output components are as follows:

  \item{modelName}{
    A character string denoting the model corresponding to the optimal BIC.
  }
  \item{n}{
    The number of observations in the data.
  }
  \item{d}{
    The dimension of the data.
  }
  \item{G}{
    The number of mixture components in the model corresponding to the optimal
    BIC.
  }
  \item{bic}{
    The optimal BIC value.
  }
  \item{loglik}{
    The log-likelihood corresponding to the optimal BIC.
  }
  \item{parameters}{
     A list with the following components:
     \describe{
        \item{\code{pro}}{
              A vector whose \emph{k}th component is the mixing proportion for
              the \emph{k}th component of the mixture model.
              If missing, equal proportions are assumed.
        }
        \item{\code{mean}}{
              The mean for each component. If there is more than one component,
              this is a matrix whose kth column is the mean of the \emph{k}th
              component of the mixture model.
        }
        \item{\code{variance}}{
              A list of variance parameters for the model.
              The components of this list depend on the model
              specification. See the help file for \code{\link{mclustVariance}}
              for details.
        }
      }
   }   
  \item{z}{
    A matrix whose \emph{[i,k]}th entry is the probability that observation
    \emph{i} in the data belongs to the \emph{k}th class.
  }
  \item{classification}{
    \code{map(z)}: The classification corresponding to \code{z}.
  }
  \item{uncertainty}{
     The uncertainty associated with the classification.
  }
  \item{Attributes:}{
      \code{"bestBICvalues"} Some of the best bic values for the analysis.\cr
      \code{"prior"} The prior as specified in the input.\cr
      \code{"control"} The control parameters for EM as specified in 
      the input.\cr
      \code{"initialization"} The parameters used to initial EM for 
      computing the maximum likelihood values used to obtain the BIC.
  }
}

\seealso{
  \code{\link{mclustBIC}}
  \code{\link{mclustModel}}
}
\examples{
irisBIC <- mclustBIC(iris[,-5])
summary(irisBIC, iris[,-5])
summary(irisBIC, iris[,-5], G = 1:6, modelNames = c("VII", "VVI", "VVV"))
}
\keyword{cluster}
% docclass is function