File: logit.Rout.save

package info (click to toggle)
r-cran-mcmc 0.9-5-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 2,304 kB
  • sloc: ansic: 1,426; makefile: 14; sh: 8
file content (179 lines) | stat: -rw-r--r-- 4,867 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

R version 3.2.1 (2015-06-18) -- "World-Famous Astronaut"
Copyright (C) 2015 The R Foundation for Statistical Computing
Platform: i686-pc-linux-gnu (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> 
>  epsilon <- 1e-15
> 
>  library(mcmc)
> 
>  RNGkind("Marsaglia-Multicarry")
>  set.seed(42)
> 
>  options(digits = 3)
> 
>  n <- 100
>  rho <- 0.5
>  beta0 <- 0.25
>  beta1 <- 1
>  beta2 <- 0.5
> 
>  x1 <- rnorm(n)
>  x2 <- rho * x1 + sqrt(1 - rho^2) * rnorm(n)
>  eta <- beta0 + beta1 * x1 + beta2 * x2
>  p <- 1 / (1 + exp(- eta))
>  y <- as.numeric(runif(n) < p)
> 
>  out <- glm(y ~ x1 + x2, family = binomial())
>  summary(out)

Call:
glm(formula = y ~ x1 + x2, family = binomial())

Deviance Residuals: 
   Min      1Q  Median      3Q     Max  
-2.064  -0.821  -0.246   0.840   2.070  

Coefficients:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept)   0.0599     0.2477    0.24  0.80905    
x1            1.3682     0.3844    3.56  0.00037 ***
x2            0.4760     0.3135    1.52  0.12886    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 138.469  on 99  degrees of freedom
Residual deviance:  99.293  on 97  degrees of freedom
AIC: 105.3

Number of Fisher Scoring iterations: 5

> 
>  mlogl <- function(beta) {
+      if (length(beta) != 3) stop("length(beta) != 3")
+      beta0 <- beta[1]
+      beta1 <- beta[2]
+      beta2 <- beta[3]
+      eta <- beta0 + beta1 * x1 + beta2 * x2
+      p <- exp(eta) / (1 + exp(eta))
+      return(- sum(log(p[y == 1])) - sum(log(1 - p[y == 0])))
+  }
> 
>  out.nlm <- nlm(mlogl, coefficients(out), print.level = 2)
iteration = 0
Parameter:
[1] 0.0599 1.3682 0.4760
Function Value
[1] 49.6
Gradient:
[1] 8.24e-06 5.50e-06 6.08e-06

Relative gradient close to zero.
Current iterate is probably solution.

> 
>  logl <- function(beta) {
+      if (length(beta) != 3) stop("length(beta) != 3")
+      beta0 <- beta[1]
+      beta1 <- beta[2]
+      beta2 <- beta[3]
+      eta <- beta0 + beta1 * x1 + beta2 * x2
+      p <- exp(eta) / (1 + exp(eta))
+      return(sum(log(p[y == 1])) + sum(log(1 - p[y == 0])))
+  }
> 
>  out.metro <- metrop(logl, coefficients(out), 1e3, scale = 0.01)
>  out.metro$accept
[1] 0.982
> 
>  out.metro <- metrop(out.metro, scale = 0.1)
>  out.metro$accept
[1] 0.795
> 
>  out.metro <- metrop(out.metro, scale = 0.5)
>  out.metro$accept
[1] 0.264
> 
>  apply(out.metro$batch, 2, mean)
[1] 0.0608 1.4230 0.5263
>  var(out.metro$batch)
         [,1]    [,2]     [,3]
[1,]  0.06755 -0.0108  0.00989
[2,] -0.01080  0.1758 -0.06155
[3,]  0.00989 -0.0615  0.10483
>  olbm(out.metro$batch, 25)
          [,1]      [,2]      [,3]
[1,]  4.54e-04  9.47e-05 -1.92e-05
[2,]  9.47e-05  1.84e-03 -6.45e-04
[3,] -1.92e-05 -6.45e-04  9.09e-04
> 
>  saveseed <- .Random.seed
>  out.metro <- metrop(logl, as.numeric(coefficients(out)), 1e2,
+      scale = 0.5, debug = TRUE)
> 
>  all(out.metro$batch[- out.metro$nbatch, ] == out.metro$current[- 1, ])
[1] TRUE
>  all(out.metro$current[1, ] == out.metro$initial)
[1] TRUE
>  all(out.metro$batch[out.metro$nbatch, ] == out.metro$final)
[1] TRUE
> 
>  .Random.seed <- saveseed
>  d <- ncol(out.metro$proposal)
>  n <- nrow(out.metro$proposal)
>  my.proposal <- matrix(NA, n, d)
>  my.u <- double(n)
>  ska <- out.metro$scale
>  for (i in 1:n) {
+      my.proposal[i, ] <- out.metro$current[i, ] + ska * rnorm(d)
+      if (is.na(out.metro$u[i])) {
+          my.u[i] <- NA
+      } else {
+          my.u[i] <- runif(1)
+      }
+  }
>  max(abs(out.metro$proposal - my.proposal)) < epsilon
[1] TRUE
>  all(is.na(out.metro$u) == is.na(my.u))
[1] TRUE
>  all(out.metro$u[!is.na(out.metro$u)] == my.u[!is.na(my.u)])
[1] TRUE
> 
>  my.curr.log.green <- apply(out.metro$current, 1, logl)
>  my.prop.log.green <- apply(out.metro$proposal, 1, logl)
>  all(is.na(out.metro$u) == (my.prop.log.green > my.curr.log.green))
[1] TRUE
>  foo <- my.prop.log.green - my.curr.log.green
>  max(abs(foo - out.metro$log.green)) < epsilon
[1] TRUE
> 
>  my.accept <- is.na(my.u) | my.u < exp(foo)
>  sum(my.accept) == round(n * out.metro$accept)
[1] TRUE
> 
>  my.path <- matrix(NA, n, d)
>  my.path[my.accept, ] <- out.metro$proposal[my.accept, ]
>  my.path[! my.accept, ] <- out.metro$current[! my.accept, ]
> 
>  all(my.path == out.metro$batch)
[1] TRUE
> 
> 
> proc.time()
   user  system elapsed 
  0.532   0.028   0.551