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1 The Problem

This is an example of using the mcmc package in R. The problem comes
from a take-home question on a (take-home) PhD qualifying exam (School of
Statistics, University of Minnesota).

Simulated data for the problem are in the dataset logit. There are five
variables in the data set, the response y and four predictors, x1, x2, x3, and x4.

A frequentist analysis for the problem is done by the following R statements

> library(mcmc)

> data(logit)

> out <- glm(y ~ x1 + x2 + x3 + x4, data = logit,

+ family = binomial, x = TRUE)

> summary(out)

Call:

glm(formula = y ~ x1 + x2 + x3 + x4, family = binomial, data = logit,

x = TRUE)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.7461 -0.6907 0.1540 0.7041 2.1943

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.6328 0.3007 2.104 0.03536 *

x1 0.7390 0.3616 2.043 0.04100 *

x2 1.1137 0.3627 3.071 0.00213 **

x3 0.4781 0.3538 1.351 0.17663

x4 0.6944 0.3989 1.741 0.08172 .

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)
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Null deviance: 137.628 on 99 degrees of freedom

Residual deviance: 87.668 on 95 degrees of freedom

AIC: 97.668

Number of Fisher Scoring iterations: 6

But this problem isn’t about that frequentist analysis, we want a Bayesian
analysis. For our Bayesian analysis we assume the same data model as the
frequentist, and we assume the prior distribution of the five parameters (the
regression coefficients) makes them independent and identically normally dis-
tributed with mean 0 and standard deviation 2.

The log unnormalized posterior density (log likelihood plus log prior) for this
model is calculated by the following R function. In order to avoid using either
global variables or ... arguments, we use the function factory pattern (Wick-
ham, 2014, Section 10.3.1; Geyer, 2018, Section 7.5, especially Subsection 7.5.4;
see also Appendix A below).

> lupost_factory <- function(x, y) function(beta) {

+ eta <- as.numeric(x %*% beta)

+ logp <- ifelse(eta < 0, eta - log1p(exp(eta)), - log1p(exp(- eta)))

+ logq <- ifelse(eta < 0, - log1p(exp(eta)), - eta - log1p(exp(- eta)))

+ logl <- sum(logp[y == 1]) + sum(logq[y == 0])

+ return(logl - sum(beta^2) / 8)

+ }

> lupost <- lupost_factory(out$x, out$y)

The tricky calculation of the log likelihood avoids overflow and catastrophic
cancellation in calculation of log(p) and log(q) where

p =
exp(η)

1 + exp(η)
=

1

1 + exp(−η)

q =
1

1 + exp(η)
=

exp(−η)

1 + exp(−η)

so taking logs gives

log(p) = η − log(1 + exp(η)) = − log(1 + exp(−η))

log(q) = − log(1 + exp(η)) = −η − log(1 + exp(−η))

To avoid overflow, we always chose the case where the argument of exp is neg-
ative. We have also avoided catastrophic cancellation when |η| is large. If η is
large and positive, then

p ≈ 1

q ≈ 0

log(p) ≈ − exp(−η)

log(q) ≈ −η − exp(−η)
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and our use of the R function log1p, which calculates the function x 7→ log(1+x)
correctly for small x avoids all problems. The case where η is large and negative
is similar.

2 Beginning MCMC

With those definitions in place, the following code runs the Metropolis algo-
rithm to simulate the posterior.

> set.seed(42) # to get reproducible results

> beta.init <- as.numeric(coefficients(out))

> out <- metrop(lupost, beta.init, 1e3)

> names(out)

[1] "accept" "batch" "initial"

[4] "final" "accept.batch" "initial.seed"

[7] "final.seed" "time" "lud"

[10] "nbatch" "blen" "nspac"

[13] "scale" "debug"

> out$accept

[1] 0.008

The arguments to the metrop function used here (there are others we don’t
use) are

� an R function (here lupost) that evaluates the log unnormalized density
of the desired stationary distribution of the Markov chain (here a poste-
rior distribution). Note that (although this example does not exhibit the
phenomenon) that the unnormalized density may be zero, in which case
the log unnormalized density is -Inf.

� an initial state (here beta.init) of the Markov chain.

� a number of batches (here 1e3) for the Markov chain. This combines with
batch length and spacing (both 1 by default) to determine the number of
iterations done.

� additional arguments (here x and y) supplied to provided functions (here
lupost).

� there is no “burn-in” argument, although burn-in is easily accomplished,
if desired (more on this below).

The output is in the component out$batch returned by the metrop function.
We’ll look at it presently, but first we need to adjust the proposal to get a higher
acceptance rate (out$accept). It is generally accepted (Gelman, Roberts, and
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Gilks, 1996) that an acceptance rate of about 20% is right, although this rec-
ommendation is based on the asymptotic analysis of a toy problem (simulating
a multivariate normal distribution) for which one would never use MCMC and
is very unrepresentative of difficult MCMC applications.

Geyer and Thompson (1995) came to a similar conclusion, that a 20% accep-
tance rate is about right, in a very different situation. But they also warned that
a 20% acceptance rate could be very wrong and produced an example where a
20% acceptance rate was impossible and attempting to reduce the acceptance
rate below 70% would keep the sampler from ever visiting part of the state space.
So the 20% magic number must be considered like other rules of thumb we teach
in intro courses (like n > 30 means means normal approximation is valid). We
know these rules of thumb can fail. There are examples in the literature where
they do fail. We keep repeating them because we want something simple to tell
beginners, and they are all right for some problems.

Be that as it may, we try for 20%.

> out <- metrop(out, scale = 0.1)

> out$accept

[1] 0.739

> out <- metrop(out, scale = 0.3)

> out$accept

[1] 0.371

> out <- metrop(out, scale = 0.5)

> out$accept

[1] 0.148

> out <- metrop(out, scale = 0.4)

> out$accept

[1] 0.209

Here the first argument to each instance of the metrop function is the output
of a previous invocation. The Markov chain continues where the previous run
stopped, doing just what it would have done if it had kept going, the initial state
and random seed being the final state and final random seed of the previous
invocation. Everything stays the same except for the arguments supplied (here
scale).

� The argument scale controls the size of the Metropolis “normal random
walk”proposal. The default is scale = 1. Big steps give lower acceptance
rates. Small steps give higher. We want something about 20%. It is also
possible to make scale a vector or a matrix. See help(metrop).

Because each run starts where the last one stopped (when the first argument
to metrop is the output of the previous invocation), each run serves as “burn-in”
for its successor (assuming that any part of that run was worth anything at all).
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3 Diagnostics

O. K. That does it for the acceptance rate. So let’s do a longer run and look
at the results.

> out <- metrop(out, nbatch = 1e4)

> t.test(out$accept.batch)$conf.int

[1] 0.2261945 0.2428055

attr(,"conf.level")

[1] 0.95

> out$time

user system elapsed

0.381 0.012 0.392

Here we do a Monte Carlo confidence interval for the true unknown acceptance
rate (what we would see with an infinite Monte Carlo sample size).

Figure 1 (page 6) shows the time series plot made by the R statement

> plot(ts(out$batch))

Another way to look at the output is an autocorrelation plot. Figure 2
(page 7) shows the time series plot made by the R statement

> acf(out$batch)

As with any multiplot plot, these are a bit hard to read. Readers are invited
to make the separate plots to get a better picture. As with all “diagnostic” plots
in MCMC, these don’t “diagnose” subtle problems.

The purpose of regression diagnostics is to find obvious, gross,
embarrassing problems that jump out of simple plots (Geyer, 2006).

The time series plots will show obvious nonstationarity. They will not show
nonobvious nonstationarity. They provide no guarantee whatsoever that your
Markov chain is sampling anything remotely resembling the correct stationary
distribution (with log unnormalized density lupost). In this very easy problem,
we do not expect any convergence difficulties and so believe what the diagnostics
seem to show, but one is a fool to trust such diagnostics in difficult problems.

The autocorrelation plots seem to show that the the autocorrelations are
negligible after about lag 25. This diagnostic inference is reliable if the sampler
is actually working (has nearly reached equilibrium) and worthless otherwise.
Thus batches of length 25 should be sufficient, but let’s use length 100 to be
safe.

A more judicious discussion of asymptotics is found in Geyer (2011, Sec-
tion 1.11.5), which says
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Figure 1: Time series plot of MCMC output.
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Figure 2: Autocorrelation plot of MCMC output.
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Many [diagnostics] come with theorems, but the theorems never
prove the property you really want a diagnostic to have. These
theorems say that if the chain converges, then the diagnostic will
probably say that the chain converged, but they do not say that if
the chain pseudo-converges, then the diagnostic will probably say
that the chain did not converge.

4 Monte Carlo Estimates and Standard Errors

> out <- metrop(out, nbatch = 100, blen = 100,

+ outfun = function(z) c(z, z^2))

> t.test(out$accept.batch)$conf.int

[1] 0.222428 0.243972

attr(,"conf.level")

[1] 0.95

> out$time

user system elapsed

0.412 0.000 0.411

We have added an argument outfun that gives the functional of the Markov
chain (Geyer, 2011, Section 1.6) we want to average. For this problem we are
interested in both posterior mean and variance. Mean is easy, just average the
variables in question. But variance is a little tricky. We need to use the identity

var(X) = E(X2)− E(X)2

to write variance as a function of two things that can be estimated by simple
averages. Hence we want to average the state itself and the squares of each
component. Hence our outfun returns c(z, z^2) for an argument (the state
vector) z.

4.1 Simple Means

The grand means (means of batch means) are

> apply(out$batch, 2, mean)

[1] 0.6531950 0.7920342 1.1701075 0.5077331 0.7488265

[6] 0.5145751 0.7560775 1.4973807 0.3913837 0.7244162

The first 5 numbers are the Monte Carlo estimates of the posterior means. The
second 5 numbers are the Monte Carlo estimates of the posterior ordinary second
moments. We get the posterior variances by
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> foo <- apply(out$batch, 2, mean)

> mu <- foo[1:5]

> sigmasq <- foo[6:10] - mu^2

> mu

[1] 0.6531950 0.7920342 1.1701075 0.5077331 0.7488265

> sigmasq

[1] 0.08791134 0.12875924 0.12822924 0.13359081 0.16367507

Monte Carlo standard errors (MCSE) are calculated from the batch means.
This is simplest for the means.

> mu.mcse <- apply(out$batch[ , 1:5], 2, sd) / sqrt(out$nbatch)

> mu.mcse

[1] 0.01224260 0.01417916 0.01793129 0.01468594 0.01582040

The extra factor sqrt(out$nbatch) arises because the batch means have vari-
ance σ2/b where b is the batch length, which is out$blen, whereas the overall
means mu have variance σ2/n where n is the total number of iterations, which
is out$blen * out$nbatch.

4.2 Functions of Means

To get the MCSE for the posterior variances we apply the delta method. Let
ui denote the sequence of batch means of the first kind for one parameter and
ū the grand mean (the estimate of the posterior mean of that parameter), let vi
denote the sequence of batch means of the second kind for the same parameter
and v̄ the grand mean (the estimate of the posterior second absolute moment
of that parameter), and let µ = E(ū) and ν = E(v̄). Then the delta method
linearizes the nonlinear function

g(µ, ν) = ν − µ2

as
∆g(µ, ν) = ∆ν − 2µ∆µ

saying that
g(ū, v̄)− g(µ, ν)

has the same asymptotic normal distribution as

(v̄ − ν)− 2µ(ū− µ)

which, of course, has variance 1 / nbatch times that of

(vi − ν)− 2µ(ui − µ)
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and this variance is estimated by

1

nbatch

nbatch∑
i=1

[
(vi − v̄)− 2ū(ui − ū)

]2
So

> u <- out$batch[ , 1:5]

> v <- out$batch[ , 6:10]

> ubar <- apply(u, 2, mean)

> vbar <- apply(v, 2, mean)

> deltau <- sweep(u, 2, ubar)

> deltav <- sweep(v, 2, vbar)

> foo <- sweep(deltau, 2, ubar, "*")

> sigmasq.mcse <- sqrt(apply((deltav - 2 * foo)^2, 2, mean) / out$nbatch)

> sigmasq.mcse

[1] 0.004241637 0.007292224 0.007271390 0.007374833

[5] 0.008175832

does the MCSE for the posterior variance.
Let’s just check that this complicated sweep and apply stuff does do the

right thing.

> sqrt(mean(((v[ , 2] - vbar[2]) - 2 * ubar[2] * (u[ , 2] - ubar[2]))^2) /

+ out$nbatch)

[1] 0.007292224

Comment Through version 0.5 of this vignette it contained an incorrect pro-
cedure for calculating this MCSE, justified by a handwave (which was incorrect).
Essentially, it said to use the standard deviation of the batch means called v

here, which appears to be very conservative.

4.3 Functions of Functions of Means

If we are also interested in the posterior standard deviation (a natural ques-
tion, although not asked on the exam problem), the delta method gives its
standard error in terms of that for the variance

> sigma <- sqrt(sigmasq)

> sigma.mcse <- sigmasq.mcse / (2 * sigma)

> sigma

[1] 0.2964985 0.3588304 0.3580911 0.3655008 0.4045678

> sigma.mcse

[1] 0.007152882 0.010161102 0.010152989 0.010088669

[5] 0.010104403
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5 A Final Run

So that’s it. The only thing left to do is a little more precision (the exam
problem directed “use a long enough run of your Markov chain sampler so that
the MCSE are less than 0.01”)

> out <- metrop(out, nbatch = 500, blen = 400)

> t.test(out$accept.batch)$conf.int

[1] 0.232917 0.237393

attr(,"conf.level")

[1] 0.95

> out$time

user system elapsed

8.046 0.000 8.046

> foo <- apply(out$batch, 2, mean)

> mu <- foo[1:5]

> sigmasq <- foo[6:10] - mu^2

> mu

[1] 0.6624650 0.7941013 1.1712710 0.5066326 0.7261414

> sigmasq

[1] 0.09189246 0.13323054 0.13230811 0.12871293 0.15978638

> mu.mcse <- apply(out$batch[ , 1:5], 2, sd) / sqrt(out$nbatch)

> mu.mcse

[1] 0.002960128 0.003647420 0.003787855 0.003632080

[5] 0.004273624

> u <- out$batch[ , 1:5]

> v <- out$batch[ , 6:10]

> ubar <- apply(u, 2, mean)

> vbar <- apply(v, 2, mean)

> deltau <- sweep(u, 2, ubar)

> deltav <- sweep(v, 2, vbar)

> foo <- sweep(deltau, 2, ubar, "*")

> sigmasq.mcse <- sqrt(apply((deltav - 2 * foo)^2, 2, mean) / out$nbatch)

> sigmasq.mcse

[1] 0.001044801 0.001725900 0.001518322 0.001553468

[5] 0.002010717
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> sigma <- sqrt(sigmasq)

> sigma.mcse <- sigmasq.mcse / (2 * sigma)

> sigma

[1] 0.3031377 0.3650076 0.3637418 0.3587658 0.3997329

> sigma.mcse

[1] 0.001723311 0.002364198 0.002087087 0.002165017

[5] 0.002515076

and some nicer output, which is presented in three tables constructed from the
R variables defined above using the R xtable command in the xtable library.

Table 1: Posterior Means

constant x1 x2 x3 x4
estimate 0.6625 0.7941 1.1713 0.5066 0.7261
MCSE 0.0030 0.0036 0.0038 0.0036 0.0043

Table 2: Posterior Variances

constant x1 x2 x3 x4
estimate 0.0919 0.1332 0.1323 0.1287 0.1598
MCSE 0.0010 0.0017 0.0015 0.0016 0.0020

Table 3: Posterior Standard Deviations

constant x1 x2 x3 x4
estimate 0.3031 0.3650 0.3637 0.3588 0.3997
MCSE 0.0017 0.0024 0.0021 0.0022 0.0025

Note for the record that the all the results presented in the tables are from
“one long run” where long here took only 8.046 seconds (on whatever computer
it was run on).

6 New Variance Estimation Functions

R function initseq (added in version 0.6 of this package) estimates variances
in the Markov chain central limit theorem (CLT) following the methodology
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introduced by Geyer (1992, Section 3.3). These methods only apply to scalar-
valued functionals of reversible Markov chains, but the Markov chains produced
by the metrop function satisfy this condition, even, as we shall see below, when
batching is used.

Rather than redo the Markov chains in the preceding material, we just look
at a toy problem, an AR(1) time series, which can be simulated in one line of
R. This is the example on the help page for initseq.

> n <- 2e4

> rho <- 0.99

> x <- arima.sim(model = list(ar = rho), n = n)

The time series x is a reversible Markov chain and trivially a scalar-valued
functional of a Markov chain.

Define
γk = cov(Xi, Xi+k) (1)

where the covariances refer to the stationary Markov chain having the same
transition probabilities as x. Then the variance in the CLT is

σ2 = γ0 + 2

∞∑
k=1

γk

(Geyer, 1992, Theorem 2.1), that is,

x̄n ≈ Normal

(
µ,
σ2

n

)
,

where µ = E(Xi) is the quantity being estimated by MCMC (in this toy problem
we know µ = 0).

Naive estimates of σ2 obtained by plugging in empirical estimates of the
gammas do not provide consistent estimation (Geyer, 1992, Section 3.1). Thus
the scheme implemented by the R function initseq. Define

Γk = γ2k + γ2k+1 (2)

Geyer (1992, Theorem 3.1) says that Γk considered as a function of k is strictly
positive, strictly decreasing, and strictly convex (provided we are, as stated
above, working with a reversible Markov chain). Thus it makes sense to use
estimators that use these properties. The estimators implemented by the R
function initseq and described by Geyer (1992, Section 3.3) are conservative-
consistent in the sense of Theorem 3.2 of that section.

Figure 3 (page 14) shows the time series plot made by the R statement

> out <- initseq(x)

> plot(seq(along = out$Gamma.pos) - 1, out$Gamma.pos,

+ xlab = "k", ylab = expression(Gamma[k]), type = "l")

> lines(seq(along = out$Gamma.dec) - 1, out$Gamma.dec, lty = "dotted")

> lines(seq(along = out$Gamma.con) - 1, out$Gamma.con, lty = "dashed")
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Figure 3: Plot “Big Gamma” defined by (1) and (2). Solid line, initial positive
sequence estimator. Dotted line, initial monotone sequence estimator. Dashed
line, initial convex sequence estimator.
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One can use whichever curve one chooses, but now that the initseq function
makes the computation trivial, it makes sense to use the initial convex sequence.

Of course, one is not interested in Figure 3, except perhaps when explaining
the methodology. What is actually important is the estimate of σ2, which is
given by

> out$var.con

[1] 14386.32

> (1 + rho) / (1 - rho) * 1 / (1 - rho^2)

[1] 10000

where for comparison we have given the exact theoretical value of σ2, which, of
course, is never available in a non-toy problem.

These initial sequence estimators seem, at first sight to be a competitor for
the method of batch means. However, appearances can be deceiving. The two
methods are complementary. The sequence of batch means is itself a scalar-
valued functional of a reversible Markov chain. Hence the initial sequence esti-
mators can be applied to it.

> blen <- 5

> x.batch <- apply(matrix(x, nrow = blen), 2, mean)

> bout <- initseq(x.batch)

Because the batch length is too short, the variance of the batch means does not
estimate σ2. We must account for the autocorrelation of the batches, shown in
Figure 4.

> plot(seq(along = bout$Gamma.con) - 1, bout$Gamma.con,

+ xlab = "k", ylab = expression(Gamma[k]), type = "l")

Because the the variance is proportional to one over the batch length, we need
to multiply by the batch length to estimate the σ2 for the original series.

> out$var.con

[1] 14386.32

> bout$var.con * blen

[1] 14466.75

Another way to look at this is that the MCMC estimator of µ is either mean(x)
or mean(x.batch). And the variance must be divided by the sample size to give
standard errors. So either

> mean(x) + c(-1, 1) * qnorm(0.975) * sqrt(out$var.con / length(x))
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Figure 4: Plot “Big Gamma” defined by (1) and (2) for the sequence of batch
means (batch length 5). Only initial convex sequence estimator is shown.
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[1] -0.5078635 2.8167249

> mean(x.batch) + c(-1, 1) * qnorm(0.975) * sqrt(bout$var.con / length(x.batch))

[1] -0.5125039 2.8213653

is an asymptotic 95% confidence interval for µ. Just divide by the relevant
sample size.

A Dot-dot-dot Versus Global Variables Versus
Closures

This appendix deals with three ways to pass information to a function being
passed to another R function (a higher-order function), for example when

� the function being passed is the objective function for an optimization
done by the higher-order function, which optimizes (R function optim for
example),

� the function being passed is the integrand for an integration done by the
higher-order function, which integrates (R function integrate for exam-
ple),

� the function being passed is the estimator of a parameter for a bootstrap
done by the higher-order function, which simulates the (bootstrap approx-
imation) of the sampling distribution of the estimator (R function boot

in R package boot, for example),

� the function being passed is the log unnormalized density function for a
simulation done by the higher-order function, which simulates the dis-
tribution having that unnormalized density (R function metrop in this
package for example),

These ways are

� using dot-dot-dot (R syntax ...),

� using global variables,

� using closures, also called the function factory pattern.

The main body of this vignette uses the third option. This appendix explains
them all and the virtues and vices of each.

A.1 Dot-dot-dot

The dot-dot-dot mechanism is fairly easy to use when only one function is
passed to the higher-order function, but does require care and more work to
use. It is even harder to deal with when more than one function is passed to
the higher-order function. R functions metrop and temper in this package can
be passed two functions: the log unnormalized density function and the output
function.
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A.2 Only One Function Argument

Previous versions of this vignette used the dot-dot-dot mechanism every-
where. In those versions the log unnormalized density function was defined
by

> lupost <- function(beta, x, y) {

+ eta <- as.numeric(x %*% beta)

+ logp <- ifelse(eta < 0, eta - log1p(exp(eta)), - log1p(exp(- eta)))

+ logq <- ifelse(eta < 0, - log1p(exp(eta)), - eta - log1p(exp(- eta)))

+ logl <- sum(logp[y == 1]) + sum(logq[y == 0])

+ return(logl - sum(beta^2) / 8)

+ }

rather than the way it is now done in the main text above. Note that everything
is the same in the two definitions except here we have

lupost <- function(beta, x, y) {

where in the main text we now have

lupost_factory <- function(x, y) function(beta) {

and then we have to execute the function factory lupost_factory to make the
lupost function.

But the main difference is that R function lupost (the user written function
specifying the log unnormalized posterior density)

� here has 3 arguments, beta, x, and y, and the latter two must be passed
via the dot-dot-dot mechanism, but

� there has 1 argument, beta, and it just knows about x and y — they are
in its closure.

So to use this lupost function, we have to add arguments x and y to each
call to R function metrop. For example

> out <- glm(y ~ x1 + x2 + x3 + x4, data = logit,

+ family = binomial, x = TRUE)

> x <- out$x

> y <- out$y

> out <- metrop(lupost, beta.init, 1e3, x = x, y = y)

> out$accept

[1] 0.015

> out <- metrop(out, scale = 0.1, x = x, y = y)

> out$accept

[1] 0.759
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> out <- metrop(out, scale = 0.3, x = x, y = y)

> out$accept

[1] 0.368

> out <- metrop(out, scale = 0.5, x = x, y = y)

> out$accept

[1] 0.174

> out <- metrop(out, scale = 0.4, x = x, y = y)

> out$accept

[1] 0.245

and so forth.
This method has the benefit that we do not have to explain function factories

and has the drawback that we need to keep remembering to add x = x, y = y

to each invocation of R function metrop. It is unclear to me which pattern is
more mysterious to naive users.

A.3 More Than One Function Argument

The situation becomes more complicated (see the Warning section of the
help pages for R functions metrop and temper) when more than one function
argument is passed to the higher-order function. Then they all must handle the
same dot-dot-dot arguments whether or not they want them.

So now we must define the output function as

> outfun <- function(z, ...) c(z, z^2)

The ... argument in the function signature is essential because this function is
going to be passed dot-dot-dot arguments x and y, which it does not need and
does not want, so it has to allow for them (and then not use them).

Then we can continue

> out <- metrop(out, nbatch = 100, blen = 100, outfun = outfun,

+ x = x, y = y)

> out$accept

[1] 0.2386

and this works. But we would have gotten an error about unused arguments
if we had defined the output function without the dot-dot-dot as we did in the
main text.

Your humble author was himself confused about this for years and so doubts
that naive R users will find it intuitive.
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A.4 Global Variables

As every programmer knows global variables are easy to use and evil (C2
Wiki, 2013). They are part of the way of R (or perhaps part of one of the ways
of R). They are OK for “very small or one-off programs” (C2 Wiki, 2013). If
you are going to throw the code away after one use, fine. If you are going to
give your code to other people or even use it yourself six months later (after you
have long forgotten the details), then this method is evil and should be avoided.

In this method we define both functions passed to the higher-order function
without ... and without using a function factory. We already in the preceding
section of this appendix defined R objects x and y as global variables (in the R
global environment .GlobalEnv). They are global variables and we use them as
such, defining

> lupost <- function(beta) {

+ eta <- as.numeric(x %*% beta)

+ logp <- ifelse(eta < 0, eta - log1p(exp(eta)), - log1p(exp(- eta)))

+ logq <- ifelse(eta < 0, - log1p(exp(eta)), - eta - log1p(exp(- eta)))

+ logl <- sum(logp[y == 1]) + sum(logq[y == 0])

+ return(logl - sum(beta^2) / 8)

+ }

> outfun <- function(z) c(z, z^2)

Then the following works

> out <- metrop(lupost, beta.init, 1e3)

> out$accept

[1] 0.032

> out <- metrop(out, scale = 0.1)

> out$accept

[1] 0.764

> out <- metrop(out, scale = 0.3)

> out$accept

[1] 0.346

> out <- metrop(out, scale = 0.5)

> out$accept

[1] 0.142

> out <- metrop(out, scale = 0.4)

> out$accept

[1] 0.247
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> out <- metrop(out, nbatch = 100, blen = 100, outfun = outfun)

> out$accept

[1] 0.2298

We get the best of both worlds. We don’t need x = x, y = y and we don’t
need a function factory.

But if we change the name of the global variables to say modmat and resp

instead of x and y, then our code breaks. R function lupost is looking up global
variables x and y under those names not under any other names. So your code
using this method is rigid and brittle and probably unusable by others.

Note that if we are using either of the other methods, renaming is no problem.
Using dot-dot-dot we do

out <- metrop(out, scale = 0.1, x = modmat, y = resp)

Using the function factory we do

lupost <- lupost_factory(modmat, resp)

See Section 7.5.3 of Geyer (2018) for more about this.

A.5 Function Factory

The terminology “function factory pattern” is apparently due to Wickham
(2014, Section 10.3.1). But it is just a special case about how closures work (in
R and all other languages that have them). Compare

> fred <- function(y) function(x) x + y

> fred(2)(3)

[1] 5

(Geyer, 2018, Section 6.5)) to

> lupost_factory <- function(x, y) function(beta) {

+ eta <- as.numeric(x %*% beta)

+ logp <- ifelse(eta < 0, eta - log1p(exp(eta)), - log1p(exp(- eta)))

+ logq <- ifelse(eta < 0, - log1p(exp(eta)), - eta - log1p(exp(- eta)))

+ logl <- sum(logp[y == 1]) + sum(logq[y == 0])

+ return(logl - sum(beta^2) / 8)

+ }

> lupost <- lupost_factory(x, y)

> lupost(beta.init)

[1] -44.19627

We could also do the same calculation treating lupost_factory as just an
ordinary curried function, like R function fred in the preceding example,
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> lupost_factory(x, y)(beta.init)

[1] -44.19627

So there is nothing mysterious about function factories. They are just one
particular use of the essence of functional programming (closures). If you really
understand functional programming, then you must understand this.

Long ago, when I switched from S to R, I would not have considered that
being an “knowledgeable user” of R required knowledge of closures. Now I do.
This is partly because other functional languages like Scheme, Javascript, F#,
Clojure, and Haskell have become very popular for general computer program-
ming. So now we want to emphasize that we can do in R what we can do in
them. But it is also partly because I now understand more about functional
programming. I can now see that if you really understand closures, then you
don’t need most other features of these programming languages (including R).
Following Crockford (2008) we can say that all programming languages (includ-
ing R) have their good parts and their bad parts and we should use the good
features and avoid the bad features. The best feature is closures. Crockford
calls this the best idea ever put in a programming language. So we should use
it a lot.

If I were starting to write the mcmc package today, I might leave out the dot-
dot-dot arguments of R functions metrop, morph.metrop, and temper. That
would mean that users could not use the dot-dot-dot pattern. They would be
forced to use the function factory pattern or the global variables pattern. And if
they had accepted that the global variables pattern is evil, then they would have
to use the function factory pattern. (If you like the dot-dot-dot pattern, don’t
worry. It is not going to be removed from this package. Backward compatibility
trumps everything.)
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