File: MCMCoprobitChange.R

package info (click to toggle)
r-cran-mcmcpack 1.7-1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,492 kB
  • sloc: cpp: 21,271; ansic: 4,372; makefile: 2; sh: 1
file content (397 lines) | stat: -rw-r--r-- 15,315 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
#########################################################
##
## sample from the posterior distribution
## of ordinal probit changepoint regression model
## using a linear Gaussian approximation
##
## JHP 07/01/2007
## JHP 03/03/2009
## JHP 09/08/2010
#########################################################

#' Markov Chain Monte Carlo for Ordered Probit Changepoint Regression Model
#'
#' This function generates a sample from the posterior distribution of an
#' ordered probit regression model with multiple parameter breaks. The function
#' uses the Markov chain Monte Carlo method of Chib (1998).  The user supplies
#' data and priors, and a sample from the posterior distribution is returned as
#' an mcmc object, which can be subsequently analyzed with functions provided
#' in the coda package.
#'
#' \code{MCMCoprobitChange} simulates from the posterior distribution of an
#' ordinal probit regression model with multiple parameter breaks. The
#' simulation of latent states is based on the linear approximation method
#' discussed in Park (2011).
#'
#' The model takes the following form:
#'
#' \deqn{\Pr(y_t = 1) = \Phi(\gamma_{c, m} - x_i'\beta_m) - \Phi(\gamma_{c-1, m} - x_i'\beta_m)\;\; m = 1, \ldots, M}
#'
#' Where \eqn{M} is the number of states, and \eqn{\gamma_{c, m}} and
#' \eqn{\beta_m} are paramters when a state is \eqn{m} at \eqn{t}.
#'
#' We assume Gaussian distribution for prior of \eqn{\beta}:
#'
#' \deqn{\beta_m \sim \mathcal{N}(b_0,B_0^{-1}),\;\; m = 1, \ldots, M}
#'
#' And:
#'
#' \deqn{p_{mm} \sim \mathcal{B}eta(a, b),\;\; m = 1, \ldots, M}
#'
#' Where \eqn{M} is the number of states.
#'
#' Note that when the fitted changepoint model has very few observations in any
#' of states, the marginal likelihood outcome can be ``nan," which indicates
#' that too many breaks are assumed given the model and data.
#'
#' @param formula Model formula.
#'
#' @param data Data frame.
#'
#' @param m The number of changepoints.
#'
#' @param burnin The number of burn-in iterations for the sampler.
#'
#' @param mcmc The number of MCMC iterations after burnin.
#'
#' @param thin The thinning interval used in the simulation.  The number of
#' MCMC iterations must be divisible by this value.
#'
#' @param tune The tuning parameter for the Metropolis-Hastings step. Default
#' of NA corresponds to a choice of 0.05 divided by the number of categories in
#' the response variable.
#'
#' @param verbose A switch which determines whether or not the progress of the
#' sampler is printed to the screen.  If \code{verbose} is greater than 0 the
#' iteration number, the \eqn{\beta} vector, and the error variance are
#' printed to the screen every \code{verbose}th iteration.
#'
#' @param seed The seed for the random number generator.  If NA, the Mersenne
#' Twister generator is used with default seed 12345; if an integer is passed
#' it is used to seed the Mersenne twister.  The user can also pass a list of
#' length two to use the L'Ecuyer random number generator, which is suitable
#' for parallel computation.  The first element of the list is the L'Ecuyer
#' seed, which is a vector of length six or NA (if NA a default seed of
#' \code{rep(12345,6)} is used).  The second element of list is a positive
#' substream number. See the MCMCpack specification for more details.
#'
#' @param beta.start The starting values for the \eqn{\beta} vector.
#' This can either be a scalar or a column vector with dimension equal to the
#' number of betas.  The default value of of NA will use the MLE estimate of
#' \eqn{\beta} as the starting value.  If this is a scalar, that value
#' will serve as the starting value mean for all of the betas.
#'
#' @param gamma.start The starting values for the \eqn{\gamma} vector.
#' This can either be a scalar or a column vector with dimension equal to the
#' number of gammas.  The default value of of NA will use the MLE estimate of
#' \eqn{\gamma} as the starting value.  If this is a scalar, that value
#' will serve as the starting value mean for all of the gammas.
#'
#' @param P.start The starting values for the transition matrix.  A user should
#' provide a square matrix with dimension equal to the number of states.  By
#' default, draws from the \code{Beta(0.9, 0.1)} are used to construct a proper
#' transition matrix for each raw except the last raw.
#'
#' @param b0 The prior mean of \eqn{\beta}.  This can either be a scalar
#' or a column vector with dimension equal to the number of betas. If this
#' takes a scalar value, then that value will serve as the prior mean for all
#' of the betas.
#'
#' @param B0 The prior precision of \eqn{\beta}.  This can either be a
#' scalar or a square matrix with dimensions equal to the number of betas.  If
#' this takes a scalar value, then that value times an identity matrix serves
#' as the prior precision of beta. Default value of 0 is equivalent to an
#' improper uniform prior for beta.
#'
#' @param a \eqn{a} is the shape1 beta prior for transition probabilities.
#' By default, the expected duration is computed and corresponding a and b
#' values are assigned. The expected duration is the sample period divided by
#' the number of states.
#'
#' @param b \eqn{b} is the shape2 beta prior for transition probabilities.
#' By default, the expected duration is computed and corresponding a and b
#' values are assigned. The expected duration is the sample period divided by
#' the number of states.
#'
#' @param marginal.likelihood How should the marginal likelihood be calculated?
#' Options are: \code{none} in which case the marginal likelihood will not be
#' calculated, and \code{Chib95} in which case the method of Chib (1995) is
#' used.
#'
#' @param gamma.fixed 1 if users want to constrain \eqn{\gamma} values
#' to be constant. By default, \eqn{\gamma} values are allowed to vary
#' across regimes.
#'
#' @param ... further arguments to be passed
#'
#' @return An mcmc object that contains the posterior sample.  This object can
#' be summarized by functions provided by the coda package.  The object
#' contains an attribute \code{prob.state} storage matrix that contains the
#' probability of \eqn{state_i} for each period, the log-likelihood of
#' the model (\code{loglike}), and the log-marginal likelihood of the model
#' (\code{logmarglike}).
#'
#' @export
#'
#' @seealso \code{\link{plotState}}, \code{\link{plotChangepoint}}
#'
#' @references Jong Hee Park. 2011. ``Changepoint Analysis of Binary and
#' Ordinal Probit Models: An Application to Bank Rate Policy Under the Interwar
#' Gold Standard."  \emph{Political Analysis}. 19: 188-204. <doi:10.1093/pan/mpr007>
#'
#' Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2011.  ``MCMCpack:
#' Markov Chain Monte Carlo in R.'', \emph{Journal of Statistical Software}.
#' 42(9): 1-21.  \doi{10.18637/jss.v042.i09}.
#'
#' Siddhartha Chib. 1998. ``Estimation and comparison of multiple change-point
#' models.'' \emph{Journal of Econometrics}. 86: 221-241.
#'
#' @keywords models
#'
#' @examples
#'
#' set.seed(1909)
#' N <- 200
#' x1 <- rnorm(N, 1, .5);
#'
#' ## set a true break at 100
#' z1 <- 1 + x1[1:100] + rnorm(100);
#' z2 <- 1 -0.2*x1[101:200] + rnorm(100);
#' z <- c(z1,  z2);
#' y <- z
#'
#' ## generate y
#' y[z < 1] <- 1;
#' y[z >= 1 & z < 2] <- 2;
#' y[z >= 2] <- 3;
#'
#' ## inputs
#' formula <- y ~ x1
#'
#' ## fit multiple models with a varying number of breaks
#' out1 <- MCMCoprobitChange(formula, m=1,
#'       	mcmc=100, burnin=100, thin=1, tune=c(.5, .5), verbose=100,
#'      	b0=0, B0=0.1, marginal.likelihood = "Chib95")
#' out2 <- MCMCoprobitChange(formula, m=2,
#'       	mcmc=100, burnin=100, thin=1, tune=c(.5, .5, .5), verbose=100,
#'      	b0=0, B0=0.1, marginal.likelihood = "Chib95")
#'
#' ## Do model comparison
#' ## NOTE: the chain should be run longer than this example!
#' BayesFactor(out1, out2)
#'
#' ## draw plots using the "right" model
#' plotState(out1)
#' plotChangepoint(out1)
#'
"MCMCoprobitChange"<-
  function(formula, data=parent.frame(),  m = 1,
           burnin = 1000, mcmc = 1000, thin = 1, tune = NA, verbose = 0,
           seed = NA, beta.start = NA, gamma.start = NA, P.start = NA,
           b0 = NULL, B0 = NULL, a = NULL, b = NULL,
           marginal.likelihood = c("none", "Chib95"),
           gamma.fixed=0, ...){

    ## checks
    check.offset(list(...))
    check.mcmc.parameters(burnin, mcmc, thin)
    cl <- match.call()
    nstore <- mcmc/thin

    ## seeds
    seeds <- form.seeds(seed)
    lecuyer <- seeds[[1]]
    seed.array <- seeds[[2]]
    lecuyer.stream <- seeds[[3]]

    totiter <- mcmc+burnin
    holder <- parse.formula(formula, data=data)
    y <- holder[[1]]
    X <- holder[[2]]
    xnames <- holder[[3]]
    K <- ncol(X)
    Y <- factor(y, ordered = TRUE)
    ncat <- nlevels(Y)
    cat <- levels(Y)
    ns <- m + 1
    N <- nrow(X)
    gk <- ncat + 1

    if(sum(is.na(tune))==1) {
      stop("Please specify a tune parameter and call MCMCoprobitChange() again.\n")
    }
    else if (length(tune)==1){
      tune <- rep(tune, ns)
    }
    else if(length(tune)>1&length(tune)<ns){
      tune <- rep(tune[1], ns)
      cat("The first element of tune is repeated to make it conformable to the number of states.\n")
    }
    else{

    }

    xint <- match("(Intercept)", colnames(X), nomatch = 0)
    if (xint > 0) {
      new.X <- X[, -xint, drop = FALSE]
    }
    else
      warning("An intercept is needed and assumed in MCMCoprobitChange()\n.")
    if (ncol(new.X) == 0) {
      polr.out <- polr(ordered(Y) ~ 1)
    }
    else {
      polr.out <- polr(ordered(Y) ~ new.X)
    }

    ## prior for transition matrix
    A0 <- trans.mat.prior(m=m, n=N, a=a, b=b)

    ## prior for beta error checking
    if(is.null(dim(b0))) {
      b0 <- b0 * matrix(1,K,1)
    }
    if((dim(b0)[1] != K) || (dim(b0)[2] != 1)) {
      cat("N(b0,B0) prior b0 not conformable.\n")
      stop("Please respecify and call MCMCoprobitChange() again.\n")
    }
    if(is.null(dim(B0))) {
      B0 <- B0 * diag(K)
    }
    if((dim(B0)[1] != K) || (dim(B0)[2] != K)) {
      cat("N(b0,B0) prior B0 not conformable.\n")
      stop("Please respecify and call MCMCoprobitChange() again.\n")
    }
    marginal.likelihood  <- match.arg(marginal.likelihood)
    B0.eigenvalues <- eigen(B0)$values
     if (isTRUE(all.equal(min(B0.eigenvalues), 0))){
      if (marginal.likelihood != "none"){
        warning("Cannot calculate marginal likelihood with improper prior\n")
        marginal.likelihood <- "none"
      }
    }
    chib <- 0
    if (marginal.likelihood == "Chib95"){
      chib <- 1
    }

    ## to save time
    B0inv <- solve(B0)
    gamma.start <- matrix(NA, ncat + 1, 1)
    gamma.start[1] <- -300
    gamma.start[2] <- 0
    gamma.start[3:ncat] <- (polr.out$zeta[2:(ncat - 1)] - polr.out$zeta[1]) * 0.588
    gamma.start[ncat + 1] <- 300

    ## initial values
    mle <- polr(Y ~ X[,-1])
    beta <- matrix(rep(c(mle$zeta[1], coef(mle)), ns), ns, , byrow=TRUE)
    ols <- lm(as.double(Y) ~ X-1)
    betalinearstart <- matrix(rep(coef(ols), ns), ns, , byrow=TRUE)
    P <-  trans.mat.prior(m=m, n=N, a=0.9, b=0.1)
    Sigmastart <- summary(ols)$sigma
    if (gamma.fixed==1){
      gamma <- gamma.start
      gamma.storage <-rep(0.0, nstore*gk)
    }
    else {
      gamma <- matrix(rep(gamma.start, ns), ns, ,  byrow=T)
      gamma.storage <- rep(0.0, nstore*ns*gk)
    }

    ## call C++ code to draw sample
    posterior <- .C("cMCMCoprobitChange",
                    betaout = as.double(rep(0.0, nstore*ns*K)),
                    betalinearout = as.double(rep(0.0, nstore*ns*K)),
                    gammaout = as.double(gamma.storage),
                    Pout = as.double(rep(0.0, nstore*ns*ns)),
                    psout = as.double(rep(0.0, N*ns)),
                    sout = as.double(rep(0.0, nstore*N)),

                    Ydata = as.double(Y),
                    Xdata = as.double(X),
                    Xrow = as.integer(nrow(X)),
                    Xcol = as.integer(ncol(X)),

                    m = as.integer(m),
                    ncat = as.integer(ncat),

                    burnin = as.integer(burnin),
                    mcmc = as.integer(mcmc),
                    thin = as.integer(thin),
                    verbose = as.integer(verbose),

                    tunedata = as.double(tune),
                    lecuyer=as.integer(lecuyer),
                    seedarray=as.integer(seed.array),
                    lecuyerstream=as.integer(lecuyer.stream),

                    betastart = as.double(beta),
                    betalinearstart = as.double(betalinearstart),
                    gammastart = as.double(gamma),
                    Pstart = as.double(P),
                    sigmastart = as.double(Sigmastart),

                    a = as.double(a),
                    b = as.double(b),
                    b0data = as.double(b0),
                    B0data = as.double(B0),
                    A0data = as.double(A0),
                    logmarglikeholder = as.double(0.0),
                    loglikeholder = as.double(0.0),
                    chib = as.integer(chib),
                    gammafixed= as.integer(gamma.fixed))

    ## get marginal likelihood if Chib95
    if (chib==1){
      logmarglike <- posterior$logmarglikeholder
      loglike <- posterior$loglikeholder
    }
    else{
      logmarglike <- loglike <- 0
    }

    ## pull together matrix and build MCMC object to return
    beta.holder <- mcmc(matrix(posterior$betaout, nstore, ns*K))
    if (gamma.fixed==1){
      gamma.holder <- mcmc(matrix(posterior$gammaout, nstore, gk))
    }
    else {
      gamma.holder <- mcmc(matrix(posterior$gammaout, nstore, ns*gk))
    }
    P.holder    <- matrix(posterior$Pout, nstore, )
    s.holder    <- matrix(posterior$sout, nstore, )
    ps.holder   <- matrix(posterior$psout, N, )

    varnames(beta.holder)  <- sapply(c(1:ns),
                                     function(i){
                                       paste(c(xnames), "_regime", i, sep = "")
                                     })
    ## betalinear
    betalinear.holder <- mcmc(matrix(posterior$betalinearout, nstore, ns*K))
    varnames(betalinear.holder)  <- sapply(c(1:ns),
                                           function(i){
                                             paste(c(xnames), "_regime", i, sep = "")
                                           })
    gamma.holder <- gamma.holder[, as.vector(sapply(1:ns, function(i){gk*(i-1) + (3:(gk-1))}))]
    gamma.names <- paste("gamma", 3:(gk-1), sep="")
    varnames(gamma.holder)  <- sapply(c(1:ns),
                                      function(i){
                                        paste(gamma.names, "_regime", i, sep = "")
                                      })

    output <- mcmc(cbind(beta.holder, gamma.holder))
    attr(output, "title") <- "MCMCoprobitChange Posterior Sample"
    ## attr(output, "betalinear") <- mcmc(betalinear.holder)
    attr(output, "formula") <- formula
    attr(output, "y")       <- Y
    attr(output, "X")       <- X
    attr(output, "m")       <- m
    attr(output, "call")    <- cl
    attr(output, "logmarglike") <- logmarglike
    attr(output, "loglike") <- loglike
    attr(output, "prob.state") <- ps.holder/nstore
    attr(output, "s.store") <- s.holder
    return(output)

  }## end of MCMC function