1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
|
#########################################################
##
## sample from the posterior distribution
## of ordinal probit changepoint regression model
## using a linear Gaussian approximation
##
## JHP 07/01/2007
## JHP 03/03/2009
## JHP 09/08/2010
#########################################################
#' Markov Chain Monte Carlo for Ordered Probit Changepoint Regression Model
#'
#' This function generates a sample from the posterior distribution of an
#' ordered probit regression model with multiple parameter breaks. The function
#' uses the Markov chain Monte Carlo method of Chib (1998). The user supplies
#' data and priors, and a sample from the posterior distribution is returned as
#' an mcmc object, which can be subsequently analyzed with functions provided
#' in the coda package.
#'
#' \code{MCMCoprobitChange} simulates from the posterior distribution of an
#' ordinal probit regression model with multiple parameter breaks. The
#' simulation of latent states is based on the linear approximation method
#' discussed in Park (2011).
#'
#' The model takes the following form:
#'
#' \deqn{\Pr(y_t = 1) = \Phi(\gamma_{c, m} - x_i'\beta_m) - \Phi(\gamma_{c-1, m} - x_i'\beta_m)\;\; m = 1, \ldots, M}
#'
#' Where \eqn{M} is the number of states, and \eqn{\gamma_{c, m}} and
#' \eqn{\beta_m} are paramters when a state is \eqn{m} at \eqn{t}.
#'
#' We assume Gaussian distribution for prior of \eqn{\beta}:
#'
#' \deqn{\beta_m \sim \mathcal{N}(b_0,B_0^{-1}),\;\; m = 1, \ldots, M}
#'
#' And:
#'
#' \deqn{p_{mm} \sim \mathcal{B}eta(a, b),\;\; m = 1, \ldots, M}
#'
#' Where \eqn{M} is the number of states.
#'
#' Note that when the fitted changepoint model has very few observations in any
#' of states, the marginal likelihood outcome can be ``nan," which indicates
#' that too many breaks are assumed given the model and data.
#'
#' @param formula Model formula.
#'
#' @param data Data frame.
#'
#' @param m The number of changepoints.
#'
#' @param burnin The number of burn-in iterations for the sampler.
#'
#' @param mcmc The number of MCMC iterations after burnin.
#'
#' @param thin The thinning interval used in the simulation. The number of
#' MCMC iterations must be divisible by this value.
#'
#' @param tune The tuning parameter for the Metropolis-Hastings step. Default
#' of NA corresponds to a choice of 0.05 divided by the number of categories in
#' the response variable.
#'
#' @param verbose A switch which determines whether or not the progress of the
#' sampler is printed to the screen. If \code{verbose} is greater than 0 the
#' iteration number, the \eqn{\beta} vector, and the error variance are
#' printed to the screen every \code{verbose}th iteration.
#'
#' @param seed The seed for the random number generator. If NA, the Mersenne
#' Twister generator is used with default seed 12345; if an integer is passed
#' it is used to seed the Mersenne twister. The user can also pass a list of
#' length two to use the L'Ecuyer random number generator, which is suitable
#' for parallel computation. The first element of the list is the L'Ecuyer
#' seed, which is a vector of length six or NA (if NA a default seed of
#' \code{rep(12345,6)} is used). The second element of list is a positive
#' substream number. See the MCMCpack specification for more details.
#'
#' @param beta.start The starting values for the \eqn{\beta} vector.
#' This can either be a scalar or a column vector with dimension equal to the
#' number of betas. The default value of of NA will use the MLE estimate of
#' \eqn{\beta} as the starting value. If this is a scalar, that value
#' will serve as the starting value mean for all of the betas.
#'
#' @param gamma.start The starting values for the \eqn{\gamma} vector.
#' This can either be a scalar or a column vector with dimension equal to the
#' number of gammas. The default value of of NA will use the MLE estimate of
#' \eqn{\gamma} as the starting value. If this is a scalar, that value
#' will serve as the starting value mean for all of the gammas.
#'
#' @param P.start The starting values for the transition matrix. A user should
#' provide a square matrix with dimension equal to the number of states. By
#' default, draws from the \code{Beta(0.9, 0.1)} are used to construct a proper
#' transition matrix for each raw except the last raw.
#'
#' @param b0 The prior mean of \eqn{\beta}. This can either be a scalar
#' or a column vector with dimension equal to the number of betas. If this
#' takes a scalar value, then that value will serve as the prior mean for all
#' of the betas.
#'
#' @param B0 The prior precision of \eqn{\beta}. This can either be a
#' scalar or a square matrix with dimensions equal to the number of betas. If
#' this takes a scalar value, then that value times an identity matrix serves
#' as the prior precision of beta. Default value of 0 is equivalent to an
#' improper uniform prior for beta.
#'
#' @param a \eqn{a} is the shape1 beta prior for transition probabilities.
#' By default, the expected duration is computed and corresponding a and b
#' values are assigned. The expected duration is the sample period divided by
#' the number of states.
#'
#' @param b \eqn{b} is the shape2 beta prior for transition probabilities.
#' By default, the expected duration is computed and corresponding a and b
#' values are assigned. The expected duration is the sample period divided by
#' the number of states.
#'
#' @param marginal.likelihood How should the marginal likelihood be calculated?
#' Options are: \code{none} in which case the marginal likelihood will not be
#' calculated, and \code{Chib95} in which case the method of Chib (1995) is
#' used.
#'
#' @param gamma.fixed 1 if users want to constrain \eqn{\gamma} values
#' to be constant. By default, \eqn{\gamma} values are allowed to vary
#' across regimes.
#'
#' @param ... further arguments to be passed
#'
#' @return An mcmc object that contains the posterior sample. This object can
#' be summarized by functions provided by the coda package. The object
#' contains an attribute \code{prob.state} storage matrix that contains the
#' probability of \eqn{state_i} for each period, the log-likelihood of
#' the model (\code{loglike}), and the log-marginal likelihood of the model
#' (\code{logmarglike}).
#'
#' @export
#'
#' @seealso \code{\link{plotState}}, \code{\link{plotChangepoint}}
#'
#' @references Jong Hee Park. 2011. ``Changepoint Analysis of Binary and
#' Ordinal Probit Models: An Application to Bank Rate Policy Under the Interwar
#' Gold Standard." \emph{Political Analysis}. 19: 188-204. <doi:10.1093/pan/mpr007>
#'
#' Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2011. ``MCMCpack:
#' Markov Chain Monte Carlo in R.'', \emph{Journal of Statistical Software}.
#' 42(9): 1-21. \doi{10.18637/jss.v042.i09}.
#'
#' Siddhartha Chib. 1998. ``Estimation and comparison of multiple change-point
#' models.'' \emph{Journal of Econometrics}. 86: 221-241.
#'
#' @keywords models
#'
#' @examples
#'
#' set.seed(1909)
#' N <- 200
#' x1 <- rnorm(N, 1, .5);
#'
#' ## set a true break at 100
#' z1 <- 1 + x1[1:100] + rnorm(100);
#' z2 <- 1 -0.2*x1[101:200] + rnorm(100);
#' z <- c(z1, z2);
#' y <- z
#'
#' ## generate y
#' y[z < 1] <- 1;
#' y[z >= 1 & z < 2] <- 2;
#' y[z >= 2] <- 3;
#'
#' ## inputs
#' formula <- y ~ x1
#'
#' ## fit multiple models with a varying number of breaks
#' out1 <- MCMCoprobitChange(formula, m=1,
#' mcmc=100, burnin=100, thin=1, tune=c(.5, .5), verbose=100,
#' b0=0, B0=0.1, marginal.likelihood = "Chib95")
#' out2 <- MCMCoprobitChange(formula, m=2,
#' mcmc=100, burnin=100, thin=1, tune=c(.5, .5, .5), verbose=100,
#' b0=0, B0=0.1, marginal.likelihood = "Chib95")
#'
#' ## Do model comparison
#' ## NOTE: the chain should be run longer than this example!
#' BayesFactor(out1, out2)
#'
#' ## draw plots using the "right" model
#' plotState(out1)
#' plotChangepoint(out1)
#'
"MCMCoprobitChange"<-
function(formula, data=parent.frame(), m = 1,
burnin = 1000, mcmc = 1000, thin = 1, tune = NA, verbose = 0,
seed = NA, beta.start = NA, gamma.start = NA, P.start = NA,
b0 = NULL, B0 = NULL, a = NULL, b = NULL,
marginal.likelihood = c("none", "Chib95"),
gamma.fixed=0, ...){
## checks
check.offset(list(...))
check.mcmc.parameters(burnin, mcmc, thin)
cl <- match.call()
nstore <- mcmc/thin
## seeds
seeds <- form.seeds(seed)
lecuyer <- seeds[[1]]
seed.array <- seeds[[2]]
lecuyer.stream <- seeds[[3]]
totiter <- mcmc+burnin
holder <- parse.formula(formula, data=data)
y <- holder[[1]]
X <- holder[[2]]
xnames <- holder[[3]]
K <- ncol(X)
Y <- factor(y, ordered = TRUE)
ncat <- nlevels(Y)
cat <- levels(Y)
ns <- m + 1
N <- nrow(X)
gk <- ncat + 1
if(sum(is.na(tune))==1) {
stop("Please specify a tune parameter and call MCMCoprobitChange() again.\n")
}
else if (length(tune)==1){
tune <- rep(tune, ns)
}
else if(length(tune)>1&length(tune)<ns){
tune <- rep(tune[1], ns)
cat("The first element of tune is repeated to make it conformable to the number of states.\n")
}
else{
}
xint <- match("(Intercept)", colnames(X), nomatch = 0)
if (xint > 0) {
new.X <- X[, -xint, drop = FALSE]
}
else
warning("An intercept is needed and assumed in MCMCoprobitChange()\n.")
if (ncol(new.X) == 0) {
polr.out <- polr(ordered(Y) ~ 1)
}
else {
polr.out <- polr(ordered(Y) ~ new.X)
}
## prior for transition matrix
A0 <- trans.mat.prior(m=m, n=N, a=a, b=b)
## prior for beta error checking
if(is.null(dim(b0))) {
b0 <- b0 * matrix(1,K,1)
}
if((dim(b0)[1] != K) || (dim(b0)[2] != 1)) {
cat("N(b0,B0) prior b0 not conformable.\n")
stop("Please respecify and call MCMCoprobitChange() again.\n")
}
if(is.null(dim(B0))) {
B0 <- B0 * diag(K)
}
if((dim(B0)[1] != K) || (dim(B0)[2] != K)) {
cat("N(b0,B0) prior B0 not conformable.\n")
stop("Please respecify and call MCMCoprobitChange() again.\n")
}
marginal.likelihood <- match.arg(marginal.likelihood)
B0.eigenvalues <- eigen(B0)$values
if (isTRUE(all.equal(min(B0.eigenvalues), 0))){
if (marginal.likelihood != "none"){
warning("Cannot calculate marginal likelihood with improper prior\n")
marginal.likelihood <- "none"
}
}
chib <- 0
if (marginal.likelihood == "Chib95"){
chib <- 1
}
## to save time
B0inv <- solve(B0)
gamma.start <- matrix(NA, ncat + 1, 1)
gamma.start[1] <- -300
gamma.start[2] <- 0
gamma.start[3:ncat] <- (polr.out$zeta[2:(ncat - 1)] - polr.out$zeta[1]) * 0.588
gamma.start[ncat + 1] <- 300
## initial values
mle <- polr(Y ~ X[,-1])
beta <- matrix(rep(c(mle$zeta[1], coef(mle)), ns), ns, , byrow=TRUE)
ols <- lm(as.double(Y) ~ X-1)
betalinearstart <- matrix(rep(coef(ols), ns), ns, , byrow=TRUE)
P <- trans.mat.prior(m=m, n=N, a=0.9, b=0.1)
Sigmastart <- summary(ols)$sigma
if (gamma.fixed==1){
gamma <- gamma.start
gamma.storage <-rep(0.0, nstore*gk)
}
else {
gamma <- matrix(rep(gamma.start, ns), ns, , byrow=T)
gamma.storage <- rep(0.0, nstore*ns*gk)
}
## call C++ code to draw sample
posterior <- .C("cMCMCoprobitChange",
betaout = as.double(rep(0.0, nstore*ns*K)),
betalinearout = as.double(rep(0.0, nstore*ns*K)),
gammaout = as.double(gamma.storage),
Pout = as.double(rep(0.0, nstore*ns*ns)),
psout = as.double(rep(0.0, N*ns)),
sout = as.double(rep(0.0, nstore*N)),
Ydata = as.double(Y),
Xdata = as.double(X),
Xrow = as.integer(nrow(X)),
Xcol = as.integer(ncol(X)),
m = as.integer(m),
ncat = as.integer(ncat),
burnin = as.integer(burnin),
mcmc = as.integer(mcmc),
thin = as.integer(thin),
verbose = as.integer(verbose),
tunedata = as.double(tune),
lecuyer=as.integer(lecuyer),
seedarray=as.integer(seed.array),
lecuyerstream=as.integer(lecuyer.stream),
betastart = as.double(beta),
betalinearstart = as.double(betalinearstart),
gammastart = as.double(gamma),
Pstart = as.double(P),
sigmastart = as.double(Sigmastart),
a = as.double(a),
b = as.double(b),
b0data = as.double(b0),
B0data = as.double(B0),
A0data = as.double(A0),
logmarglikeholder = as.double(0.0),
loglikeholder = as.double(0.0),
chib = as.integer(chib),
gammafixed= as.integer(gamma.fixed))
## get marginal likelihood if Chib95
if (chib==1){
logmarglike <- posterior$logmarglikeholder
loglike <- posterior$loglikeholder
}
else{
logmarglike <- loglike <- 0
}
## pull together matrix and build MCMC object to return
beta.holder <- mcmc(matrix(posterior$betaout, nstore, ns*K))
if (gamma.fixed==1){
gamma.holder <- mcmc(matrix(posterior$gammaout, nstore, gk))
}
else {
gamma.holder <- mcmc(matrix(posterior$gammaout, nstore, ns*gk))
}
P.holder <- matrix(posterior$Pout, nstore, )
s.holder <- matrix(posterior$sout, nstore, )
ps.holder <- matrix(posterior$psout, N, )
varnames(beta.holder) <- sapply(c(1:ns),
function(i){
paste(c(xnames), "_regime", i, sep = "")
})
## betalinear
betalinear.holder <- mcmc(matrix(posterior$betalinearout, nstore, ns*K))
varnames(betalinear.holder) <- sapply(c(1:ns),
function(i){
paste(c(xnames), "_regime", i, sep = "")
})
gamma.holder <- gamma.holder[, as.vector(sapply(1:ns, function(i){gk*(i-1) + (3:(gk-1))}))]
gamma.names <- paste("gamma", 3:(gk-1), sep="")
varnames(gamma.holder) <- sapply(c(1:ns),
function(i){
paste(gamma.names, "_regime", i, sep = "")
})
output <- mcmc(cbind(beta.holder, gamma.holder))
attr(output, "title") <- "MCMCoprobitChange Posterior Sample"
## attr(output, "betalinear") <- mcmc(betalinear.holder)
attr(output, "formula") <- formula
attr(output, "y") <- Y
attr(output, "X") <- X
attr(output, "m") <- m
attr(output, "call") <- cl
attr(output, "logmarglike") <- logmarglike
attr(output, "loglike") <- loglike
attr(output, "prob.state") <- ps.holder/nstore
attr(output, "s.store") <- s.holder
return(output)
}## end of MCMC function
|