1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
|
##########################################################################
## sample from the posterior distribution of a probit
## model in R using linked C++ code in Scythe
##
## ADM and KQ 5/21/2002
## Modified to meet new developer specification 7/26/2004 KQ
## Modified for new Scythe and rngs 7/26/2004 KQ
## Modified to handle marginal likelihood calculation 1/27/2006 KQ
##
## This software is distributed under the terms of the GNU GENERAL
## PUBLIC LICENSE Version 2, June 1991. See the package LICENSE
## file for more information.
##
## Copyright (C) 2003-2007 Andrew D. Martin and Kevin M. Quinn
## Copyright (C) 2007-present Andrew D. Martin, Kevin M. Quinn,
## and Jong Hee Park
##########################################################################
#' Markov Chain Monte Carlo for Probit Regression
#'
#' This function generates a sample from the posterior distribution of a probit
#' regression model using the data augmentation approach of Albert and Chib
#' (1993). The user supplies data and priors, and a sample from the posterior
#' distribution is returned as an mcmc object, which can be subsequently
#' analyzed with functions provided in the coda package.
#'
#' \code{MCMCprobit} simulates from the posterior distribution of a probit
#' regression model using data augmentation. The simulation proper is done in
#' compiled C++ code to maximize efficiency. Please consult the coda
#' documentation for a comprehensive list of functions that can be used to
#' analyze the posterior sample.
#'
#' The model takes the following form:
#'
#' \deqn{y_i \sim \mathcal{B}ernoulli(\pi_i)}
#'
#' Where the inverse link function:
#'
#' \deqn{\pi_i = \Phi(x_i'\beta)}
#'
#' We assume a multivariate Normal prior on \eqn{\beta}:
#'
#' \deqn{\beta \sim \mathcal{N}(b_0,B_0^{-1})}
#'
#' See Albert and Chib (1993)
#' for estimation details.
#'
#'
#' @param formula Model formula.
#'
#' @param data Data frame.
#'
#' @param burnin The number of burn-in iterations for the sampler.
#'
#' @param mcmc The number of Gibbs iterations for the sampler.
#'
#' @param thin The thinning interval used in the simulation. The number of
#' Gibbs iterations must be divisible by this value.
#'
#' @param verbose A switch which determines whether or not the progress of the
#' sampler is printed to the screen. If \code{verbose} is greater than 0 the
#' iteration number and the betas are printed to the screen every
#' \code{verbose}th iteration.
#'
#' @param seed The seed for the random number generator. If NA, the Mersenne
#' Twister generator is used with default seed 12345; if an integer is passed
#' it is used to seed the Mersenne twister. The user can also pass a list of
#' length two to use the L'Ecuyer random number generator, which is suitable
#' for parallel computation. The first element of the list is the L'Ecuyer
#' seed, which is a vector of length six or NA (if NA a default seed of
#' \code{rep(12345,6)} is used). The second element of list is a positive
#' substream number. See the MCMCpack specification for more details.
#'
#' @param beta.start The starting value for the \eqn{\beta} vector. This
#' can either be a scalar or a column vector with dimension equal to the number
#' of betas. If this takes a scalar value, then that value will serve as the
#' starting value for all of the betas. The default value of NA will use the
#' maximum likelihood estimate of \eqn{\beta} as the starting value.
#'
#' @param b0 The prior mean of \eqn{\beta}. This can either be a scalar
#' or a column vector with dimension equal to the number of betas. If this
#' takes a scalar value, then that value will serve as the prior mean for all
#' of the betas.
#'
#' @param B0 The prior precision of \eqn{\beta}. This can either be a
#' scalar or a square matrix with dimensions equal to the number of betas. If
#' this takes a scalar value, then that value times an identity matrix serves
#' as the prior precision of \eqn{\beta}. Default value of 0 is
#' equivalent to an improper uniform prior on \eqn{\beta}.
#'
#' @param bayes.resid Should latent Bayesian residuals (Albert and Chib, 1995)
#' be returned? Default is FALSE meaning no residuals should be returned.
#' Alternatively, the user can specify an array of integers giving the
#' observation numbers for which latent residuals should be calculated and
#' returned. TRUE will return draws of latent residuals for all observations.
#'
#' @param marginal.likelihood How should the marginal likelihood be calculated?
#' Options are: \code{none} in which case the marginal likelihood will not be
#' calculated, \code{Laplace} in which case the Laplace approximation (see Kass
#' and Raftery, 1995) is used, or \code{Chib95} in which case Chib (1995)
#' method is used.
#'
#' @param ... further arguments to be passed
#'
#' @return An mcmc object that contains the posterior sample. This object can
#' be summarized by functions provided by the coda package.
#'
#' @export
#'
#' @seealso \code{\link[coda]{plot.mcmc}},\code{\link[coda]{summary.mcmc}},
#' \code{\link[stats]{glm}}
#'
#' @references Albert, J. H. and S. Chib. 1993. ``Bayesian Analysis of Binary
#' and Polychotomous Response Data.'' \emph{J. Amer. Statist. Assoc.} 88,
#' 669-679
#'
#' Albert, J. H. and S. Chib. 1995. ``Bayesian Residual Analysis for Binary
#' Response Regression Models.'' \emph{Biometrika.} 82, 747-759.
#'
#' Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2011. ``MCMCpack:
#' Markov Chain Monte Carlo in R.'', \emph{Journal of Statistical Software}.
#' 42(9): 1-21. \doi{10.18637/jss.v042.i09}.
#'
#' Siddhartha Chib. 1995. ``Marginal Likelihood from the Gibbs Output.''
#' \emph{Journal of the American Statistical Association}. 90: 1313-1321.
#' <doi: 10.1080/01621459.1995.10476635>
#'
#' Daniel Pemstein, Kevin M. Quinn, and Andrew D. Martin. 2007. \emph{Scythe
#' Statistical Library 1.0.} \url{http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/}.
#'
#' Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines. 2006. ``Output
#' Analysis and Diagnostics for MCMC (CODA)'', \emph{R News}. 6(1): 7-11.
#' \url{https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf}.
#'
#' @keywords models
#'
#' @examples
#'
#' \dontrun{
#' data(birthwt)
#' out1 <- MCMCprobit(low~as.factor(race)+smoke, data=birthwt,
#' b0 = 0, B0 = 10, marginal.likelihood="Chib95")
#' out2 <- MCMCprobit(low~age+as.factor(race), data=birthwt,
#' b0 = 0, B0 = 10, marginal.likelihood="Chib95")
#' out3 <- MCMCprobit(low~age+as.factor(race)+smoke, data=birthwt,
#' b0 = 0, B0 = 10, marginal.likelihood="Chib95")
#' BayesFactor(out1, out2, out3)
#' plot(out3)
#' summary(out3)
#' }
#'
"MCMCprobit" <-
function(formula, data=NULL, burnin = 1000, mcmc = 10000,
thin = 1, verbose = 0, seed = NA, beta.start = NA,
b0 = 0, B0 = 0, bayes.resid=FALSE,
marginal.likelihood = c("none", "Laplace", "Chib95"), ...) {
## checks
check.offset(list(...))
check.mcmc.parameters(burnin, mcmc, thin)
cl <- match.call()
## seeds
seeds <- form.seeds(seed)
lecuyer <- seeds[[1]]
seed.array <- seeds[[2]]
lecuyer.stream <- seeds[[3]]
## form response and model matrices
holder <- parse.formula(formula, data=data)
Y <- holder[[1]]
X <- holder[[2]]
xnames <- holder[[3]]
K <- ncol(X) # number of covariates
## starting values and priors
beta.start <- coef_start(beta.start, K, formula,
family=binomial(link="probit"), data)
mvn.prior <- form.mvn.prior(b0, B0, K)
b0 <- mvn.prior[[1]]
B0 <- mvn.prior[[2]]
## get marginal likelihood argument
marginal.likelihood <- match.arg(marginal.likelihood)
B0.eigenvalues <- eigen(B0)$values
if (min(B0.eigenvalues) < 0){
stop("B0 is not positive semi-definite.\nPlease respecify and call again.\n")
}
if (isTRUE(all.equal(min(B0.eigenvalues), 0))){
if (marginal.likelihood != "none"){
warning("Cannot calculate marginal likelihood with improper prior\n")
marginal.likelihood <- "none"
}
}
logmarglike <- NULL
## residuals setup
resvec <- NULL
if (is.logical(bayes.resid) && bayes.resid==TRUE){
resvec <- matrix(1:length(Y), length(Y), 1)
}
else if (!is.logical(bayes.resid)){
resvec <- matrix(bayes.resid, length(bayes.resid), 1)
if (min(resvec %in% 1:length(Y)) == 0){
cat("Elements of bayes.resid are not valid row numbers.\n")
stop("Check data and call MCMCprobit() again.\n")
}
}
## y \in {0, 1} error checking
if (sum(Y!=0 & Y!=1) > 0) {
cat("Elements of Y equal to something other than 0 or 1.\n")
stop("Check data and call MCMCprobit() again.\n")
}
## if Chib95 is true
chib <- 0
if (marginal.likelihood == "Chib95"){
chib <- 1
}
posterior <- NULL
if (is.null(resvec)){
## define holder for posterior density sample
sample <- matrix(data=0, mcmc/thin, dim(X)[2] )
## call C++ code to draw sample
auto.Scythe.call(output.object="posterior", cc.fun.name="cMCMCprobit",
sample.nonconst=sample, Y=Y, X=X,
burnin=as.integer(burnin),
mcmc=as.integer(mcmc), thin=as.integer(thin),
lecuyer=as.integer(lecuyer),
seedarray=as.integer(seed.array),
lecuyerstream=as.integer(lecuyer.stream),
verbose=as.integer(verbose), betastart=beta.start,
b0=b0, B0=B0, logmarglikeholder.nonconst = as.double(0.0),
chib = as.integer(chib))
## get marginal likelihood if Chib95
if (marginal.likelihood == "Chib95"){
logmarglike <- posterior$logmarglikeholder
}
## marginal likelihood calculation if Laplace
if (marginal.likelihood == "Laplace"){
theta.start <- beta.start
optim.out <- optim(theta.start, logpost.probit, method="BFGS",
control=list(fnscale=-1),
hessian=TRUE, y=Y, X=X, b0=b0, B0=B0)
theta.tilde <- optim.out$par
beta.tilde <- theta.tilde[1:K]
Sigma.tilde <- solve(-1*optim.out$hessian)
logmarglike <- (length(theta.tilde)/2)*log(2*pi) +
log(sqrt(det(Sigma.tilde))) +
logpost.probit(theta.tilde, Y, X, b0, B0)
}
## put together matrix and build MCMC object to return
output <- form.mcmc.object(posterior, names=xnames,
title="MCMCprobit Posterior Sample",
y=Y, call=cl,
logmarglike=logmarglike)
}
else{
# define holder for posterior density sample
sample <- matrix(data=0, mcmc/thin, dim(X)[2]+length(resvec) )
## call C++ code to draw sample
auto.Scythe.call(output.object="posterior", cc.fun.name="MCMCprobitres",
sample.nonconst=sample, Y=Y, X=X, resvec=resvec,
burnin=as.integer(burnin),
mcmc=as.integer(mcmc), thin=as.integer(thin),
lecuyer=as.integer(lecuyer),
seedarray=as.integer(seed.array),
lecuyerstream=as.integer(lecuyer.stream),
verbose=as.integer(verbose), betastart=beta.start,
b0=b0, B0=B0, logmarglikeholder.nonconst= as.double(0.0),
chib = as.integer(chib))
## get marginal likelihood if Chib95
if (marginal.likelihood == "Chib95"){
logmarglike <- posterior$logmarglikeholder
}
## marginal likelihood calculation if Laplace
if (marginal.likelihood == "Laplace"){
theta.start <- beta.start
optim.out <- optim(theta.start, logpost.probit, method="BFGS",
control=list(fnscale=-1),
hessian=TRUE, y=Y, X=X, b0=b0, B0=B0)
theta.tilde <- optim.out$par
beta.tilde <- theta.tilde[1:K]
Sigma.tilde <- solve(-1*optim.out$hessian)
logmarglike <- (length(theta.tilde)/2)*log(2*pi) +
log(sqrt(det(Sigma.tilde))) +
logpost.probit(theta.tilde, Y, X, b0, B0)
}
## put together matrix and build MCMC object to return
xnames <- c(xnames, paste("epsilonstar", as.character(resvec), sep="") )
output <- form.mcmc.object(posterior, names=xnames,
title="MCMCprobit Posterior Sample",
y=Y, call=cl, logmarglike=logmarglike)
}
return(output)
}
|