1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
|
##########################################################################
## simple instructional models using Monte Carlo simulation
##
## This software is distributed under the terms of the GNU GENERAL
## PUBLIC LICENSE Version 2, June 1991. See the package LICENSE
## file for more information.
##
## Copyright (C) 2003-2007 Andrew D. Martin and Kevin M. Quinn
## Copyright (C) 2007-present Andrew D. Martin, Kevin M. Quinn,
## and Jong Hee Park
##########################################################################
## Monte Carlo simulation from the likelihood of a
## binomial distribution with a Beta(alpha, beta) prior
## ADM 1/25/2006
#' Monte Carlo Simulation from a Binomial Likelihood with a Beta Prior
#'
#' This function generates a sample from the posterior distribution of a
#' binomial likelihood with a Beta prior.
#'
#' \code{MCbinomialbeta} directly simulates from the posterior distribution.
#' This model is designed primarily for instructional use. \eqn{\pi} is
#' the probability of success for each independent Bernoulli trial. We assume
#' a conjugate Beta prior:
#'
#' \deqn{\pi \sim \mathcal{B}eta(\alpha, \beta)}
#'
#' \eqn{y} is the number of successes in \eqn{n} trials. By
#' default, a uniform prior is used.
#'
#' @param y The number of successes in the independent Bernoulli trials.
#'
#' @param n The number of independent Bernoulli trials.
#'
#' @param alpha Beta prior distribution alpha parameter.
#'
#' @param beta Beta prior distribution beta parameter.
#'
#' @param mc The number of Monte Carlo draws to make.
#'
#' @param ... further arguments to be passed
#'
#' @return An mcmc object that contains the posterior sample. This object can
#' be summarized by functions provided by the coda package.
#'
#' @export
#'
#' @seealso \code{\link[coda]{plot.mcmc}}, \code{\link[coda]{summary.mcmc}}
#'
#' @keywords models
#'
#' @examples
#'
#' \dontrun{
#' posterior <- MCbinomialbeta(3,12,mc=5000)
#' summary(posterior)
#' plot(posterior)
#' grid <- seq(0,1,0.01)
#' plot(grid, dbeta(grid, 1, 1), type="l", col="red", lwd=3, ylim=c(0,3.6),
#' xlab="pi", ylab="density")
#' lines(density(posterior), col="blue", lwd=3)
#' legend(.75, 3.6, c("prior", "posterior"), lwd=3, col=c("red", "blue"))
#' }
#'
MCbinomialbeta <- function(y, n, alpha=1, beta=1, mc=1000, ...) {
# check data
if (any(y < 0)) {
cat("Error: Number of successes negative.\n")
stop("Please respecify and call function again.")
}
if (any(n < 0)) {
cat("Error: Number of trials negative.\n")
stop("Please respecify and call function again.")
}
if (any(y > n)) {
cat("Error: Number of successes greater than number of trials.\n")
stop("Please respecify and call function again.")
}
# check other parameters
check.beta.prior(alpha, beta)
check.mc.parameter(mc)
# draw sample and return
output <- mcmc(matrix(rbeta(mc, alpha+y, beta+n-y),mc,1))
varnames(output) <- as.list("pi")
attr(output,"title") <- "MCbinomialbeta Posterior Sample"
return(output)
}
## Monte Carlo simulation from the likelihood of a
## Poisson distribution with a Gamma(alpha, beta) prior
## ADM 1/25/2006
#' Monte Carlo Simulation from a Poisson Likelihood with a Gamma Prior
#'
#' This function generates a sample from the posterior distribution of a
#' Poisson likelihood with a Gamma prior.
#'
#' \code{MCpoissongamma} directly simulates from the posterior distribution.
#' This model is designed primarily for instructional use.
#' \eqn{\lambda} is the parameter of interest of the Poisson
#' distribution. We assume a conjugate Gamma prior:
#'
#' \deqn{\lambda \sim \mathcal{G}amma(\alpha, \beta)}
#'
#' \eqn{y} is a vector of counts.
#'
#' @param y A vector of counts (must be non-negative).
#'
#' @param alpha Gamma prior distribution shape parameter.
#'
#' @param beta Gamma prior distribution scale parameter.
#'
#' @param mc The number of Monte Carlo draws to make.
#'
#' @param ... further arguments to be passed
#'
#' @return An mcmc object that contains the posterior sample. This object can
#' be summarized by functions provided by the coda package.
#'
#' @export
#'
#' @seealso \code{\link[coda]{plot.mcmc}}, \code{\link[coda]{summary.mcmc}}
#'
#' @keywords models
#'
#' @examples
#'
#' \dontrun{
#' data(quine)
#' posterior <- MCpoissongamma(quine$Days, 15, 1, 5000)
#' summary(posterior)
#' plot(posterior)
#' grid <- seq(14,18,0.01)
#' plot(grid, dgamma(grid, 15, 1), type="l", col="red", lwd=3, ylim=c(0,1.3),
#' xlab="lambda", ylab="density")
#' lines(density(posterior), col="blue", lwd=3)
#' legend(17, 1.3, c("prior", "posterior"), lwd=3, col=c("red", "blue"))
#' }
#'
MCpoissongamma <- function(y, alpha, beta, mc=1000, ...) {
# check data
if(any(y < 0)) {
cat("Error: Some counts negative in y.\n")
stop("Please respecify and call function again.")
}
n <- length(y)
# check other parameters
check.gamma.prior(alpha, beta)
check.mc.parameter(mc)
# draw sample and return
output <- mcmc(matrix(rgamma(mc, alpha+sum(y), beta+n),mc,1))
varnames(output) <- as.list("lambda")
attr(output,"title") <- "MCpoissongamma Posterior Sample"
return(output)
}
## Monte Carlo simulation from the likelihood of a
## Normal distribution with a Normal(mu0, tau20) prior
## the variance sigma2 is known
## ADM 1/26/2006
#' Monte Carlo Simulation from a Normal Likelihood (with known variance) with a
#' Normal Prior
#'
#' This function generates a sample from the posterior distribution of a Normal
#' likelihood (with known variance) with a Normal prior.
#'
#' \code{MCnormalnormal} directly simulates from the posterior distribution.
#' This model is designed primarily for instructional use. \eqn{\mu} is
#' the parameter of interest of the Normal distribution. We assume a conjugate
#' normal prior:
#'
#' \deqn{\mu \sim \mathcal{N}(\mu_0, \tau^2_0)}
#'
#' \eqn{y} is a vector of observed data.
#'
#' @param y The data.
#'
#' @param sigma2 The known variance of y.
#'
#' @param mu0 The prior mean of mu.
#'
#' @param tau20 The prior variance of mu.
#'
#' @param mc The number of Monte Carlo draws to make.
#'
#' @param ... further arguments to be passed
#'
#' @return An mcmc object that contains the posterior sample. This object can
#' be summarized by functions provided by the coda package.
#'
#' @export
#'
#' @seealso \code{\link[coda]{plot.mcmc}}, \code{\link[coda]{summary.mcmc}}
#'
#' @keywords models
#'
#' @examples
#'
#' \dontrun{
#' y <- c(2.65, 1.80, 2.29, 2.11, 2.27, 2.61, 2.49, 0.96, 1.72, 2.40)
#' posterior <- MCMCpack:::MCnormalnormal(y, 1, 0, 1, 5000)
#' summary(posterior)
#' plot(posterior)
#' grid <- seq(-3,3,0.01)
#' plot(grid, dnorm(grid, 0, 1), type="l", col="red", lwd=3, ylim=c(0,1.4),
#' xlab="mu", ylab="density")
#' lines(density(posterior), col="blue", lwd=3)
#' legend(-3, 1.4, c("prior", "posterior"), lwd=3, col=c("red", "blue"))
#' }
#'
MCnormalnormal <- function(y, sigma2, mu0, tau20, mc=1000, ...) {
n <- length(y)
if(sigma2 <= 0) {
cat("Error: Known variance sigma2 is less than or equal to zero.\n")
stop("Please respecify and call function again.")
}
# check other parameters
check.normal.prior(mu0, tau20)
check.mc.parameter(mc)
# draw sample and return
mu1 = (1/tau20 * mu0 + n/sigma2 * mean(y)) / (1/tau20 + n/sigma2)
tau21 = 1 / (1/tau20 + n/sigma2)
output <- mcmc(matrix(rnorm(mc, mu1, sqrt(tau21)),mc,1))
varnames(output) <- as.list("mu")
attr(output,"title") <- "MCnormalnormal Posterior Sample"
return(output)
}
## Monte Carlo simulation from the likelihood of a
## multinomal distribution with a Dirichlet(alpha) prior
#' Monte Carlo Simulation from a Multinomial Likelihood with a Dirichlet Prior
#'
#' This function generates a sample from the posterior distribution of a
#' multinomial likelihood with a Dirichlet prior.
#'
#' \code{MCmultinomdirichlet} directly simulates from the posterior
#' distribution. This model is designed primarily for instructional use.
#' \eqn{\pi} is the parameter of interest of the multinomial distribution.
#' It is of dimension \eqn{(d \times 1)}. We assume a conjugate
#' Dirichlet prior:
#'
#' \deqn{\pi \sim \mathcal{D}irichlet(\alpha_0)}
#'
#' \eqn{y} is a \eqn{(d \times 1)} vector of
#' observed data.
#'
#' @param y A vector of data (number of successes for each category).
#'
#' @param alpha0 The vector of parameters of the Dirichlet prior.
#'
#' @param mc The number of Monte Carlo draws to make.
#'
#' @param ... further arguments to be passed
#'
#' @return An mcmc object that contains the posterior sample. This object can
#' be summarized by functions provided by the coda package.
#'
#' @export
#'
#' @seealso \code{\link[coda]{plot.mcmc}}, \code{\link[coda]{summary.mcmc}}
#' @keywords models
#'
#' @examples
#'
#' \dontrun{
#' ## Example from Gelman, et. al. (1995, p. 78)
#' posterior <- MCmultinomdirichlet(c(727,583,137), c(1,1,1), mc=10000)
#' bush.dukakis.diff <- posterior[,1] - posterior[,2]
#' cat("Pr(Bush > Dukakis): ",
#' sum(bush.dukakis.diff > 0) / length(bush.dukakis.diff), "\n")
#' hist(bush.dukakis.diff)
#' }
#'
MCmultinomdirichlet <- function(y, alpha0, mc=1000, ...) {
# check data
d <- length(y)
if(any(y < 0)) {
cat("Error: Some counts negative in y.\n")
stop("Please respecify and call function again.")
}
# check alpha
if(length(alpha0) != d) {
cat("Error: Dimension of alpha and y do not match.\n")
stop("Please respecify and call function again.")
}
if(any(alpha0 <= 0)) {
cat("Error: At least one alpha in Dirichlet prior less than or equal to zero.\n")
stop("Please respecify and call function again.")
}
# draw sample and return
output <- mcmc(rdirichlet(mc,y + alpha0))
varnames(output) <- paste("pi.", 1:d, sep="")
attr(output,"title") <- "MCmultinomdirichlet Posterior Sample"
return(output)
}
|