File: import-internal-spss-sysfile.R

package info (click to toggle)
r-cran-memisc 0.99.31.8.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 2,136 kB
  • sloc: ansic: 5,117; makefile: 2
file content (172 lines) | stat: -rw-r--r-- 4,986 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
spss.readheader <- function(f)
 .Call("read_sysfile_header",f)

spss.readvars <- function(f,n){
  ans <- list()

  if(n > 0){
      for(i in 1:n){
          currvar <- .Call("read_sysfile_var",f)
          ans <- c(ans,list(currvar))
      }
  }
  else {
      repeat {
          currvar <- .Call("read_sysfile_var",f)
          if(!is.null(currvar))
              ans <- c(ans,list(currvar))
          else break
      }
  }
  names(ans) <- sapply(ans,function(x)x$name)
  ans
}

spss.testcode <- function(f)
  .Call("test_sysfile_int32",f)

spss.readlabels <- function(f){
  ans <- list()
  while(spss.testcode(f)==3){
    ans <- c(ans,list(.Call("read_sysfile_value_labels",f)))
  }
  ans
}

spss.readdocument <- function(f)
  .Call("read_sysfile_document",f)

spss.readaux <- function(f)
  .Call("read_sysfile_aux",f)

spss.dictterm <- function(f)
  .Call("read_sysfile_dict_term",f)

parseSysHeader <- function(file){
  header <- spss.readheader(file)
  swapcode <- header$swap_code
  nvars <- header$case_size
  attr(file,"swap_code") <- swapcode
  attr(file,"case_size") <- nvars
  attr(file,"bias") <- header$bias
  attr(file,"compressed") <- header$compressed
  variables <- spss.readvars(file,nvars)
  if(nvars == 0){
      warning("File header does not contain information on the number of variables.
  This is a bug in the software (ReadStat/haven?) with which the data file was created.
  Guessing that number.",
              call.=FALSE,immediate.=TRUE)
      nvars <- length(variables)
      attr(file,"case_size") <- nvars
  }
  
  value.labels <- NULL
  document <- NULL
  if(spss.testcode(file)==3)
    value.labels <- spss.readlabels(file)
  if(spss.testcode(file)==6)
    document <- spss.readdocument(file)
    
  auxiliaries <- list()
  while(spss.testcode(file)==7){
    aux <- spss.readaux(file)
    auxtype <- aux$type
    aux <- list(aux$data)
    names(aux) <- auxtype
    auxiliaries <- c(auxiliaries,aux)
  }
  if(length(auxiliaries$info_flt64)){

    sysmis  <- auxiliaries$info_flt64["sysmis"]
    highest <- auxiliaries$info_flt64["highest"]
    lowest  <- auxiliaries$info_flt64["lowest"]
  }
  else{

    warning("file lacks info_flt64 record, using defaults")

    info_flt64 <- .Call("dflt_info_flt64",file)
    sysmis  <- info_flt64["sysmis"]
    highest <- info_flt64["highest"]
    lowest  <- info_flt64["lowest"]
  }
  attr(file,"sysmis") <- sysmis
  attr(file,"highest") <- highest
  attr(file,"lowest") <- lowest
  if(spss.testcode(file)==999) start.data <- spss.dictterm(file)
  else stop("did not find dictionary termination code")
  #message("\nstart of data:",p$start.data)
  attr(file,"sysmis") <- sysmis
  attr(file,"data_pos") <- start.data

  if(length(auxiliaries$longVariableNames)){
    longVariableNames <- auxiliaries$longVariableNames
    longVariableNames <- strsplit(longVariableNames,"\t")[[1]]
    longVariableNames <- strsplit(longVariableNames,"=")
    longVariableNames <- sapply(longVariableNames,function(lvn)
        structure(lvn[2],names=lvn[1]))
    ii <- match(names(longVariableNames),names(variables))
    names(variables)[ii] <- unname(longVariableNames)
  }
  
  variables <- lapply(variables,function(x)x[-1])
  
  missings <- list()
  
  missings$values <- lapply(variables,"[[","missings")
  missings$ranges <- vector(length(variables),mode="list")
  names(missings$ranges) <- names(missings$values)
  n_missings <- sapply(variables,"[[","n_missing_values")
  
  mrang <- missings$values[n_missings == -2]
  if(length(mrang)){
    mrang <- do.call(rbind,mrang)
    is.lo <- mrang[,1] == lowest
    is.hi <- mrang[,2] == highest
    if(length(is.lo))
      mrang[is.lo,1] <- -Inf
    if(length(is.hi))
      mrang[is.hi,2] <- Inf
    missings$ranges[n_missings == -2] <- split(mrang,row(mrang))
  }
  mrang_val <- missings$values[n_missings == -3]
  if(length(mrang_val)){
    mrang_val <- do.call(rbind,mrang_val)
    
    is.lo <- mrang_val[,1] == lowest
    is.hi <- mrang_val[,2] == highest
    if(length(is.lo))
      mrang_val[is.lo,1] <- -Inf
    if(length(is.hi))
      mrang_val[is.hi,2] <- Inf
    missings$values[n_missings == -3] <- split(unname(mrang_val[,3,drop=FALSE]),seq_len(nrow(mrang_val)))
    missings$ranges[n_missings == -3] <- split(mrang_val[,1:2,drop=FALSE],row(mrang_val[,1:2,drop=FALSE]))
  }
  missings$values[n_missings == -2] <- list(NULL)
  
  types <- sapply(variables,function(x)x$type)
  digits <- sapply(variables,function(x)x$print[4])
  list(
    header = header,
    auxiliaries = auxiliaries,
    variables = variables[types>=0],
    value.labels = value.labels,
    missings = missings,
    types = types,
    document = document
    )
}

# seekSysData <- function(p)
#   .Call("rewind_sysfile",p$file)

# spss_numeric_to_POSIXct <- function(x){
#     x <- as.numeric(x)
#     as.POSIXct(x, origin = "1582-10-14", tz = "GMT")
# }

spss.string.vallabs <- function(vallab)
    structure(
        trimws(.Call("num_to_string8",vallab)),
        names=names(vallab)
    )