File: gentab.Rmd

package info (click to toggle)
r-cran-memisc 0.99.31.8.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 2,136 kB
  • sloc: ansic: 5,117; makefile: 2
file content (767 lines) | stat: -rw-r--r-- 33,577 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
---
title: Generating Tables of Descriptive Statistics
output: rmarkdown::html_vignette
vignette: >
  % \VignetteIndexEntry{Generating Tables of Descriptive Statistics}
  % \VignetteEngine{knitr::rmarkdown}
  %\VignetteEncoding{UTF-8}
---

```{r,echo=FALSE,message=FALSE}
knitr::opts_chunk$set(comment=NA,eval=FALSE)
```


# Motivation

*R* is well suited for statistical graphics, the application of advanced data
analysis techniques, and Monte Carlo studies of estimators. However, it lacks
support for the typical data management tasks as they arise in the social
sciences as well as for the simple generation of desctiptive
statistics. "memisc" facilitates not only typical data management tasks of
survey researchers, but also the generation of descriptive statistics, as they
are often a first step in serious social science data analysis.  In particular
it facilitates the creation of tables of percentages of other descriptive
statistics broken down by subgroups in the data. This is mainly achieved by the
function `genTable`, which is described in the following section. The section
thereafter describes how tables thus created can be exported to LaTeX and HTML.


Note that these examples require data not included in the package 
(you need to register to [GESIS](https://www.gesis.org) to download the data). 
The vignette code cannot be run without this additional data.

# Creating Tables of Descriptive Statistics

General table of descriptive statistics can be created using the function
`genTable()`. The syntax of calls to this function is quite similar to that of
the function `xtabs()`: The first argument (tagged `formula`) is a formula that
determines the descriptive statistics used and by what groups they are
computed. The left-hand side of the formula determines the statistics being
computed. The right-hand side determines the grouping factor(s). The second
argument is an optional `data=` argument that determines from which data frame
or data set the descriptive statistics are to be computed. This is illustrated
by the following example, which uses (like the page on item
objects, see `?item`) the GLES 2013 election study[^1].  In this example we
first create a table of some descriptives of the age distribution of the
respondents per German federal state:

```r
library(memisc)
ZA5702 <- spss.system.file("Data/ZA5702_v2-0-0.sav",
                           ignore.scale.info=TRUE) # Because the measurement info in the file is wrong.
gles2013work <- subset(ZA5702,
                       select=c(
                         wave                  = survey,
                         gender                = vn1,
                         byear                 = vn2c,
                         bmonth                = vn2b,
                         intent.turnout        = v10,
                         turnout               = n10,
                         voteint.candidate     = v11aa,
                         voteint.list          = v11ba,
                         postal.vote.candidate = v12aa,
                         postal.vote.list      = v12ba,
                         vote.candidate        = n11aa,
                         vote.list             = n11ba,                 
                         bula                  = bl
                       ))
gles2013work <- within(gles2013work,{
  measurement(byear) <- "interval"
  measurement(bmonth) <- "interval"
  age <- 2013 - byear
  age[bmonth > 9] <- age[bmonth > 9] - 1
  
})
options(digits=3)
age.tab <- genTable(c(Mean=mean(age),
           `Std.dev`=sd(age),
           Median=median(age))~bula,
         data=gles2013work)
age.tab
```

```
         bula
          Baden-Wuerttemberg Bayern Berlin Brandenburg Bremen Hamburg Hessen
  Mean                    55     54     53          60     60      51     57
  Std.dev                 19     19     20          19     12      19     19
  Median                  57     56     57          62     63      53     60
         bula
          Mecklenburg-Vorpommern Niedersachsen Nordrhein-Westfalen
  Mean                        57            55                  54
  Std.dev                     19            18                  19
  Median                      60            56                  55
         bula
          Rheinland-Pfalz Saarland Sachsen Sachsen-Anhalt Schleswig-Holstein
  Mean                 57       62      58             55                 60
  Std.dev              18       17      17             17                 20
  Median               60       65      60             56                 65
         bula
          Thueringen
  Mean            58
  Std.dev         17
  Median          60
```
This table does not look good, so we transprose it:

```r
age.tab <- t(age.tab)
age.tab
```

```                      
bula                     Mean Std.dev Median
  Baden-Wuerttemberg     54.5    18.9   57.0
  Bayern                 54.4    18.9   56.0
  Berlin                 52.8    19.8   57.0
  Brandenburg            59.7    19.3   62.5
  Bremen                 60.4    11.5   63.0
  Hamburg                51.5    18.7   53.0
  Hessen                 56.9    18.5   60.0
  Mecklenburg-Vorpommern 57.0    19.2   60.5
  Niedersachsen          55.1    18.4   56.0
  Nordrhein-Westfalen    53.9    19.1   55.0
  Rheinland-Pfalz        57.2    18.2   60.5
  Saarland               61.9    17.3   65.0
  Sachsen                58.3    16.7   60.5
  Sachsen-Anhalt         54.7    17.1   56.0
  Schleswig-Holstein     60.0    19.9   65.0
  Thueringen             57.8    17.4   60.0
```
In the next example we create a table of percentages of the second votes per federal state. First we have to prepare the data, though:

```r
gles2013work <- within(gles2013work,{

  candidate.vote <- cases(
              wave == 1 & intent.turnout == 6 -> postal.vote.candidate,
              wave == 1 & intent.turnout %in% 4:5 -> 900,
              wave == 1 & intent.turnout %in% 1:3 -> voteint.candidate,
              wave == 2 & turnout == 1 -> vote.candidate,
              wave == 2 & turnout == 2 -> 900
            )

  list.vote <- cases(
              wave == 1 & intent.turnout == 6 -> postal.vote.list,
              wave == 1 & intent.turnout %in% 4:5 -> 900,
              wave == 1 & intent.turnout %in% 1:3 -> voteint.list,
              wave == 2 & turnout ==1 -> vote.list,
              wave == 2 & turnout ==2 -> 900
            )

  candidate.vote <- recode(as.item(candidate.vote),
                      "CDU/CSU"   =  1 <- 1,
                      "SPD"       =  2 <- 4,
                      "FDP"       =  3 <- 5,
                      "Grüne"     =  4 <- 6,
                      "Linke"     =  5 <- 7,
                      "NPD"       =  6 <- 206,
                      "Piraten"   =  7 <- 215,
                      "AfD"       =  8 <- 322,
                      "Other"     = 10 <- 801,
                      "No Vote"   = 90 <- 900,
                      "WN"        = 98 <- -98,
                      "KA"        = 99 <- -99
                  )
  list.vote <- recode(as.item(list.vote),
                      "CDU/CSU"   =  1 <- 1,
                      "SPD"       =  2 <- 4,
                      "FDP"       =  3 <- 5,
                      "Grüne"     =  4 <- 6,
                      "Linke"     =  5 <- 7,
                      "NPD"       =  6 <- 206,
                      "Piraten"   =  7 <- 215,
                      "AfD"       =  8 <- 322,
                      "Other"     = 10 <- 801,
                      "No Vote"   = 90 <- 900,
                      "WN"        = 98 <- -98,
                      "KA"        = 99 <- -99
                  )
  
   missing.values(candidate.vote) <- 98:99
   missing.values(list.vote) <- 98:99
   measurement(candidate.vote) <- "nominal"
   measurement(list.vote) <- "nominal"
})
```

```
Warning messages:
1: In cases(postal.vote.candidate <- wave == 1 & intent.turnout ==  :
  78 NAs created
2: In cases(postal.vote.list <- wave == 1 & intent.turnout == 6, 900 <- wave ==  :
  78 NAs created
3: In recode(as.item(candidate.vote), `CDU/CSU` = 1 <- 1, SPD = 2 <- 4,  :
  recoding created 18 NAs
4: In recode(as.item(list.vote), `CDU/CSU` = 1 <- 1, SPD = 2 <- 4,  :
  recoding created 19 NAs
```

(When the code is run, some warnings are issued, that indicate that the conditions are not exhaustive,
that is, there are some observations for which none of the conditions in the call `cases()`
are met. The corresponding elements of resulting vector will contain `NA` for these observations.
In the present case this occurs with observations that have missing values in both `intent.turnout` and `turnout`.)

After having set up the data, we get our table of percentages:

```r
vote.tab <- genTable(percent(list.vote)~bula,
                     data=gles2013work)
options(digits=1)
t(vote.tab)
```

```
bula                     CDU/CSU SPD FDP Grüne Linke NPD Piraten AfD Other No Vote   N
  Baden-Wuerttemberg          28  22   7    17     6 0.4     2.1 4.6   1.1      12 285
  Bayern                      36  18   6    11     5 0.0     2.4 4.0   2.0      16 451
  Berlin                      27  22   8    10    14 1.8     1.8 6.6   0.6       8 166
  Brandenburg                 20  23   2     6    19 0.6     0.6 2.5   1.2      25 162
  Bremen                      22  26   0    17    13 0.0     0.0 4.3   0.0      17  23
  Hamburg                     22  36   2     4     7 2.2     0.0 4.4   2.2      20  45
  Hessen                      42  26   3     8     4 0.0     0.5 3.0   0.0      12 200
  Mecklenburg-Vorpommern      33  20   2     4    18 1.4     2.7 1.4   0.0      18 146
  Niedersachsen               33  32   3    10     3 0.0     0.7 0.7   0.4      17 284
  Nordrhein-Westfalen         33  31   3    11     4 0.4     2.3 1.8   0.7      13 563
  Rheinland-Pfalz             39  21   2     6     9 1.6     0.8 3.9   1.6      15 127
  Saarland                    40  40   0     0     0 0.0     0.0 0.0   0.0      20  30
  Sachsen                     49  17   1     3    14 0.3     1.2 0.9   0.3      13 332
  Sachsen-Anhalt              27  29   1     8    19 0.4     0.8 0.4   0.0      13 241
  Schleswig-Holstein          28  26   4     9     4 0.0     0.0 5.2   0.9      22 116
  Thueringen                  35  16   2     3    22 1.2     0.0 2.4   0.8      18 245
```

It is of course also possible to create multi-dimensional tables, i.e. tables created by grouping by more than one factor:

```r
gles2013work <- within(gles2013work,{

  # We relabel the items, since they are originally in German
  labels(turnout) <- c("Yes, voted"=1, "No, did not vote"=2)   
  labels(gender) <- c("Male"=1,"Female"=2)
})
genTable(percent(turnout)~gender+bula,
         data=gles2013work)
```

```
, , bula = Baden-Wuerttemberg

                  gender
                   Male Female
  Yes, voted         88     85
  No, did not vote   12     15
  N                  90     61

, , bula = Bayern

                  gender
                   Male Female
  Yes, voted         85     80
  No, did not vote   15     20
  N                  89    129

, , bula = Berlin

                  gender
                   Male Female
  Yes, voted        100     85
  No, did not vote    0     15
  N                  38     52

, , bula = Brandenburg

                  gender
                   Male Female
  Yes, voted         83     77
  No, did not vote   17     23
  N                  36     62

, , bula = Bremen

                  gender
                   Male Female
  Yes, voted         91     80
  No, did not vote    9     20
  N                  11      5

, , bula = Hamburg

                  gender
                   Male Female
  Yes, voted         88     76
  No, did not vote   12     24
  N                  16     21

, , bula = Hessen

                  gender
                   Male Female
  Yes, voted         91     81
  No, did not vote    9     19
  N                  66     48

, , bula = Mecklenburg-Vorpommern

                  gender
                   Male Female
  Yes, voted         84     72
  No, did not vote   16     28
  N                  32     47

, , bula = Niedersachsen

                  gender
                   Male Female
  Yes, voted         88     83
  No, did not vote   12     17
  N                  75     70

, , bula = Nordrhein-Westfalen

                  gender
                   Male Female
  Yes, voted         90     82
  No, did not vote   10     18
  N                 148    158

, , bula = Rheinland-Pfalz

                  gender
                   Male Female
  Yes, voted         84     85
  No, did not vote   16     15
  N                  43     34

, , bula = Saarland

                  gender
                   Male Female
  Yes, voted         91     72
  No, did not vote    9     28
  N                  11     18

, , bula = Sachsen

                  gender
                   Male Female
  Yes, voted         88     88
  No, did not vote   12     12
  N                 103     73

, , bula = Sachsen-Anhalt

                  gender
                   Male Female
  Yes, voted         89     81
  No, did not vote   11     19
  N                  63     73

, , bula = Schleswig-Holstein

                  gender
                   Male Female
  Yes, voted         89     85
  No, did not vote   11     15
  N                  37     33

, , bula = Thueringen

                  gender
                   Male Female
  Yes, voted         91     71
  No, did not vote    9     29
  N                  70     73
```

# Formatting Tables of Descriptive Statistics

The results of `genTable()` are objects of class `"table"` so that they can be
re-arranged into a "flattened" table by the function `ftable`. To demonstrate
this, we continue the previous example:

```r
gt <- genTable(percent(turnout)~gender+bula,
         data=gles2013work)
# We beautify the table a bit ...
names(dimnames(gt)) <- c("Voted","Gender","State")
gt <- dimrename(gt,"Yes, voted"="Yes",
                "No, did not vote"="No")
ftable(gt,col.vars = c("Gender","Voted"))
```

```
                       Gender Male         Female        
                       Voted   Yes  No   N    Yes  No   N
State                                                    
Baden-Wuerttemberg              88  12  90     85  15  61
Bayern                          85  15  89     80  20 129
Berlin                         100   0  38     85  15  52
Brandenburg                     83  17  36     77  23  62
Bremen                          91   9  11     80  20   5
Hamburg                         88  12  16     76  24  21
Hessen                          91   9  66     81  19  48
Mecklenburg-Vorpommern          84  16  32     72  28  47
Niedersachsen                   88  12  75     83  17  70
Nordrhein-Westfalen             90  10 148     82  18 158
Rheinland-Pfalz                 84  16  43     85  15  34
Saarland                        91   9  11     72  28  18
Sachsen                         88  12 103     88  12  73
Sachsen-Anhalt                  89  11  63     81  19  73
Schleswig-Holstein              89  11  37     85  15  33
Thueringen                      91   9  70     71  29  73
```

Arranging the cells of a table using `ftable()` improves the appearance of the
results of `genTable()` on screen, but to include the results into a word
processor document or a LaTeX file, further facilities are needed and provided
by "memisc". To include the flattened table into a LaTeX document, one can
convert and store it in the appropriate format using `toLatex()` and
`writeLines()`

```r
ft <- ftable(gt,col.vars = c("Gender","Voted"))
lt <- toLatex(ft,digits=c(1,1,0,1,1,0))
writeLines(lt,con="Voted2013-GenderState.tex")
```


For HTML output, one can use `show_html()` (e.g. for inclusion in "knitr"
documents) and `write_html()`, both functions being based on
`format_html()`. Here we continue the example to demonstate this:

```r
show_html(ft,digits=c(1,1,0,1,1,0))
```

```{=html}
<style>
      table#ftable-3 {
         border-collapse: collapse; border-style: none; margin: 2ex auto;
      } 
      table#ftable-3 tr {
          border-style: none;
      } 
      table#ftable-3 td {
        padding-top: 3px; 
        padding-bottom: 3px; 
        padding-left: 0.5ex; 
        padding-right: 0.5ex; 
        margin: 0px; 
        margin-top: 0px;
        margin-bottom: 0px;
        border-style: none; 
        border-width: 0; 
      }
table#ftable-3 tr:nth-child(1){
     border-top: 2px solid;
}
table#ftable-3 tr:nth-child(2){
     border-bottom: 1px solid;
}
table#ftable-3 tr:nth-child(18){
     border-bottom: 2px solid;
}
table#ftable-3 tr:nth-child(1) td:nth-child(n+3){
     border-bottom: 1px solid;
}
table#ftable-3 td:nth-child(4),
table#ftable-3 td:nth-child(7),
table#ftable-3 td:nth-child(10),
table#ftable-3 td:nth-child(13),
table#ftable-3 td:nth-child(16),
table#ftable-3 td:nth-child(19){
         padding-left: 0px;
         padding-right: 0px;
         text-align: center; 
         width: .2ex;
         /*background-color: blue;*/
        }
table#ftable-3 td:nth-child(3),
table#ftable-3 td:nth-child(6),
table#ftable-3 td:nth-child(9),
table#ftable-3 td:nth-child(12),
table#ftable-3 td:nth-child(15),
table#ftable-3 td:nth-child(18){
         padding-left: 0.5ex;
         padding-right: 0px;
         text-align: right; 
         /*background-color: red;*/
        }
table#ftable-3 td:nth-child(5),
table#ftable-3 td:nth-child(8),
table#ftable-3 td:nth-child(11),
table#ftable-3 td:nth-child(14),
table#ftable-3 td:nth-child(17),
table#ftable-3 td:nth-child(20){
         padding-left: 0px;
         padding-right: 0.5ex;
         text-align: left; 
         /*background-color: green;*/
        } 
table#ftable-3 td:nth-child(n of .header){
         padding-left: 0.5ex;
         padding-right: 0.5ex;
         text-align: center; 
         /*background-color: gray;*/
        } 
</style>
<table class="ftable" id="ftable-3">
<tr><td></td><td>Gender:</td><td colspan="9" class="header">Male</td><td colspan="9" class="header">Female</td></tr>
<tr><td>State</td><td>Voted:</td><td colspan="3" class="header">Yes</td><td colspan="3" class="header">No</td><td colspan="3" class="header">N</td><td colspan="3" class="header">Yes</td><td colspan="3" class="header">No</td><td colspan="3" class="header">N</td></tr>
<tr><td>Baden-Wuerttemberg</td><td></td><td>87</td><td>.</td><td>8</td><td>12</td><td>.</td><td>2</td><td>90</td><td></td><td></td><td>85</td><td>.</td><td>2</td><td>14</td><td>.</td><td>8</td><td>61</td><td></td><td></td></tr>
<tr><td>Bayern</td><td></td><td>85</td><td>.</td><td>4</td><td>14</td><td>.</td><td>6</td><td>89</td><td></td><td></td><td>79</td><td>.</td><td>8</td><td>20</td><td>.</td><td>2</td><td>129</td><td></td><td></td></tr>
<tr><td>Berlin</td><td></td><td>100</td><td>.</td><td>0</td><td>0</td><td>.</td><td>0</td><td>38</td><td></td><td></td><td>84</td><td>.</td><td>6</td><td>15</td><td>.</td><td>4</td><td>52</td><td></td><td></td></tr>
<tr><td>Brandenburg</td><td></td><td>83</td><td>.</td><td>3</td><td>16</td><td>.</td><td>7</td><td>36</td><td></td><td></td><td>77</td><td>.</td><td>4</td><td>22</td><td>.</td><td>6</td><td>62</td><td></td><td></td></tr>
<tr><td>Bremen</td><td></td><td>90</td><td>.</td><td>9</td><td>9</td><td>.</td><td>1</td><td>11</td><td></td><td></td><td>80</td><td>.</td><td>0</td><td>20</td><td>.</td><td>0</td><td>5</td><td></td><td></td></tr>
<tr><td>Hamburg</td><td></td><td>87</td><td>.</td><td>5</td><td>12</td><td>.</td><td>5</td><td>16</td><td></td><td></td><td>76</td><td>.</td><td>2</td><td>23</td><td>.</td><td>8</td><td>21</td><td></td><td></td></tr>
<tr><td>Hessen</td><td></td><td>90</td><td>.</td><td>9</td><td>9</td><td>.</td><td>1</td><td>66</td><td></td><td></td><td>81</td><td>.</td><td>2</td><td>18</td><td>.</td><td>8</td><td>48</td><td></td><td></td></tr>
<tr><td>Mecklenburg-Vorpommern</td><td></td><td>84</td><td>.</td><td>4</td><td>15</td><td>.</td><td>6</td><td>32</td><td></td><td></td><td>72</td><td>.</td><td>3</td><td>27</td><td>.</td><td>7</td><td>47</td><td></td><td></td></tr>
<tr><td>Niedersachsen</td><td></td><td>88</td><td>.</td><td>0</td><td>12</td><td>.</td><td>0</td><td>75</td><td></td><td></td><td>82</td><td>.</td><td>9</td><td>17</td><td>.</td><td>1</td><td>70</td><td></td><td></td></tr>
<tr><td>Nordrhein-Westfalen</td><td></td><td>89</td><td>.</td><td>9</td><td>10</td><td>.</td><td>1</td><td>148</td><td></td><td></td><td>82</td><td>.</td><td>3</td><td>17</td><td>.</td><td>7</td><td>158</td><td></td><td></td></tr>
<tr><td>Rheinland-Pfalz</td><td></td><td>83</td><td>.</td><td>7</td><td>16</td><td>.</td><td>3</td><td>43</td><td></td><td></td><td>85</td><td>.</td><td>3</td><td>14</td><td>.</td><td>7</td><td>34</td><td></td><td></td></tr>
<tr><td>Saarland</td><td></td><td>90</td><td>.</td><td>9</td><td>9</td><td>.</td><td>1</td><td>11</td><td></td><td></td><td>72</td><td>.</td><td>2</td><td>27</td><td>.</td><td>8</td><td>18</td><td></td><td></td></tr>
<tr><td>Sachsen</td><td></td><td>88</td><td>.</td><td>3</td><td>11</td><td>.</td><td>7</td><td>103</td><td></td><td></td><td>87</td><td>.</td><td>7</td><td>12</td><td>.</td><td>3</td><td>73</td><td></td><td></td></tr>
<tr><td>Sachsen-Anhalt</td><td></td><td>88</td><td>.</td><td>9</td><td>11</td><td>.</td><td>1</td><td>63</td><td></td><td></td><td>80</td><td>.</td><td>8</td><td>19</td><td>.</td><td>2</td><td>73</td><td></td><td></td></tr>
<tr><td>Schleswig-Holstein</td><td></td><td>89</td><td>.</td><td>2</td><td>10</td><td>.</td><td>8</td><td>37</td><td></td><td></td><td>84</td><td>.</td><td>8</td><td>15</td><td>.</td><td>2</td><td>33</td><td></td><td></td></tr>
<tr><td>Thueringen</td><td></td><td>91</td><td>.</td><td>4</td><td>8</td><td>.</td><td>6</td><td>70</td><td></td><td></td><td>71</td><td>.</td><td>2</td><td>28</td><td>.</td><td>8</td><td>73</td><td></td><td></td></tr>
</table>
```

```r
show_html(ft,digits=c(1,1,0,1,1,0),show.titles=FALSE)
```

```{=html}
<style>
      table#ftable-4 {
         border-collapse: collapse; border-style: none; margin: 2ex auto;
      } 
      table#ftable-4 tr {
          border-style: none;
      } 
      table#ftable-4 td {
        padding-top: 3px; 
        padding-bottom: 3px; 
        padding-left: 0.5ex; 
        padding-right: 0.5ex; 
        margin: 0px; 
        margin-top: 0px;
        margin-bottom: 0px;
        border-style: none; 
        border-width: 0; 
      }
table#ftable-4 tr:nth-child(1){
     border-top: 2px solid;
}
table#ftable-4 tr:nth-child(2){
     border-bottom: 1px solid;
}
table#ftable-4 tr:nth-child(18){
     border-bottom: 2px solid;
}
table#ftable-4 tr:nth-child(1) td:nth-child(n+2){
     border-bottom: 1px solid;
}
table#ftable-4 td:nth-child(3),
table#ftable-4 td:nth-child(6),
table#ftable-4 td:nth-child(9),
table#ftable-4 td:nth-child(12),
table#ftable-4 td:nth-child(15),
table#ftable-4 td:nth-child(18){
         padding-left: 0px;
         padding-right: 0px;
         text-align: center; 
         width: .2ex;
         /*background-color: blue;*/
        }
table#ftable-4 td:nth-child(2),
table#ftable-4 td:nth-child(5),
table#ftable-4 td:nth-child(8),
table#ftable-4 td:nth-child(11),
table#ftable-4 td:nth-child(14),
table#ftable-4 td:nth-child(17){
         padding-left: 0.5ex;
         padding-right: 0px;
         text-align: right; 
         /*background-color: red;*/
        }
table#ftable-4 td:nth-child(4),
table#ftable-4 td:nth-child(7),
table#ftable-4 td:nth-child(10),
table#ftable-4 td:nth-child(13),
table#ftable-4 td:nth-child(16),
table#ftable-4 td:nth-child(19){
         padding-left: 0px;
         padding-right: 0.5ex;
         text-align: left; 
         /*background-color: green;*/
        } 
table#ftable-4 td:nth-child(n of .header){
         padding-left: 0.5ex;
         padding-right: 0.5ex;
         text-align: center; 
         /*background-color: gray;*/
        } 
</style>
<table class="ftable" id="ftable-4">
<tr><td></td><td colspan="9" class="header">Male</td><td colspan="9" class="header">Female</td></tr>
<tr><td></td><td colspan="3" class="header">Yes</td><td colspan="3" class="header">No</td><td colspan="3" class="header">N</td><td colspan="3" class="header">Yes</td><td colspan="3" class="header">No</td><td colspan="3" class="header">N</td></tr>
<tr><td>Baden-Wuerttemberg</td><td>87</td><td>.</td><td>8</td><td>12</td><td>.</td><td>2</td><td>90</td><td></td><td></td><td>85</td><td>.</td><td>2</td><td>14</td><td>.</td><td>8</td><td>61</td><td></td><td></td></tr>
<tr><td>Bayern</td><td>85</td><td>.</td><td>4</td><td>14</td><td>.</td><td>6</td><td>89</td><td></td><td></td><td>79</td><td>.</td><td>8</td><td>20</td><td>.</td><td>2</td><td>129</td><td></td><td></td></tr>
<tr><td>Berlin</td><td>100</td><td>.</td><td>0</td><td>0</td><td>.</td><td>0</td><td>38</td><td></td><td></td><td>84</td><td>.</td><td>6</td><td>15</td><td>.</td><td>4</td><td>52</td><td></td><td></td></tr>
<tr><td>Brandenburg</td><td>83</td><td>.</td><td>3</td><td>16</td><td>.</td><td>7</td><td>36</td><td></td><td></td><td>77</td><td>.</td><td>4</td><td>22</td><td>.</td><td>6</td><td>62</td><td></td><td></td></tr>
<tr><td>Bremen</td><td>90</td><td>.</td><td>9</td><td>9</td><td>.</td><td>1</td><td>11</td><td></td><td></td><td>80</td><td>.</td><td>0</td><td>20</td><td>.</td><td>0</td><td>5</td><td></td><td></td></tr>
<tr><td>Hamburg</td><td>87</td><td>.</td><td>5</td><td>12</td><td>.</td><td>5</td><td>16</td><td></td><td></td><td>76</td><td>.</td><td>2</td><td>23</td><td>.</td><td>8</td><td>21</td><td></td><td></td></tr>
<tr><td>Hessen</td><td>90</td><td>.</td><td>9</td><td>9</td><td>.</td><td>1</td><td>66</td><td></td><td></td><td>81</td><td>.</td><td>2</td><td>18</td><td>.</td><td>8</td><td>48</td><td></td><td></td></tr>
<tr><td>Mecklenburg-Vorpommern</td><td>84</td><td>.</td><td>4</td><td>15</td><td>.</td><td>6</td><td>32</td><td></td><td></td><td>72</td><td>.</td><td>3</td><td>27</td><td>.</td><td>7</td><td>47</td><td></td><td></td></tr>
<tr><td>Niedersachsen</td><td>88</td><td>.</td><td>0</td><td>12</td><td>.</td><td>0</td><td>75</td><td></td><td></td><td>82</td><td>.</td><td>9</td><td>17</td><td>.</td><td>1</td><td>70</td><td></td><td></td></tr>
<tr><td>Nordrhein-Westfalen</td><td>89</td><td>.</td><td>9</td><td>10</td><td>.</td><td>1</td><td>148</td><td></td><td></td><td>82</td><td>.</td><td>3</td><td>17</td><td>.</td><td>7</td><td>158</td><td></td><td></td></tr>
<tr><td>Rheinland-Pfalz</td><td>83</td><td>.</td><td>7</td><td>16</td><td>.</td><td>3</td><td>43</td><td></td><td></td><td>85</td><td>.</td><td>3</td><td>14</td><td>.</td><td>7</td><td>34</td><td></td><td></td></tr>
<tr><td>Saarland</td><td>90</td><td>.</td><td>9</td><td>9</td><td>.</td><td>1</td><td>11</td><td></td><td></td><td>72</td><td>.</td><td>2</td><td>27</td><td>.</td><td>8</td><td>18</td><td></td><td></td></tr>
<tr><td>Sachsen</td><td>88</td><td>.</td><td>3</td><td>11</td><td>.</td><td>7</td><td>103</td><td></td><td></td><td>87</td><td>.</td><td>7</td><td>12</td><td>.</td><td>3</td><td>73</td><td></td><td></td></tr>
<tr><td>Sachsen-Anhalt</td><td>88</td><td>.</td><td>9</td><td>11</td><td>.</td><td>1</td><td>63</td><td></td><td></td><td>80</td><td>.</td><td>8</td><td>19</td><td>.</td><td>2</td><td>73</td><td></td><td></td></tr>
<tr><td>Schleswig-Holstein</td><td>89</td><td>.</td><td>2</td><td>10</td><td>.</td><td>8</td><td>37</td><td></td><td></td><td>84</td><td>.</td><td>8</td><td>15</td><td>.</td><td>2</td><td>33</td><td></td><td></td></tr>
<tr><td>Thueringen</td><td>91</td><td>.</td><td>4</td><td>8</td><td>.</td><td>6</td><td>70</td><td></td><td></td><td>71</td><td>.</td><td>2</td><td>28</td><td>.</td><td>8</td><td>73</td><td></td><td></td></tr>
</table>
```

```r
# Writing into a HTML file ...
write_html(ft,digits=c(1,1,0,1,1,0),show.titles=FALSE,
           file="Voted2013-GenderState.html")
```
Continuing another example:

```r
# age.tab was created earlier
age.ftab <- ftable(age.tab,row.vars=2)
show_html(age.ftab,digits=1,show.titles=FALSE)
```

```{=html}
<style>
      table#ftable-6 {
         border-collapse: collapse; border-style: none; margin: 2ex auto;
      } 
      table#ftable-6 tr {
          border-style: none;
      } 
      table#ftable-6 td {
        padding-top: 3px; 
        padding-bottom: 3px; 
        padding-left: 0.5ex; 
        padding-right: 0.5ex; 
        margin: 0px; 
        margin-top: 0px;
        margin-bottom: 0px;
        border-style: none; 
        border-width: 0; 
      }
table#ftable-6 tr:nth-child(1){
     border-top: 2px solid;
}
table#ftable-6 tr:nth-child(1){
     border-bottom: 1px solid;
}
table#ftable-6 tr:nth-child(17){
     border-bottom: 2px solid;
}
table#ftable-6 td:nth-child(3),
table#ftable-6 td:nth-child(6),
table#ftable-6 td:nth-child(9){
         padding-left: 0px;
         padding-right: 0px;
         text-align: center; 
         width: .2ex;
         /*background-color: blue;*/
        }
table#ftable-6 td:nth-child(2),
table#ftable-6 td:nth-child(5),
table#ftable-6 td:nth-child(8){
         padding-left: 0.5ex;
         padding-right: 0px;
         text-align: right; 
         /*background-color: red;*/
        }
table#ftable-6 td:nth-child(4),
table#ftable-6 td:nth-child(7),
table#ftable-6 td:nth-child(10){
         padding-left: 0px;
         padding-right: 0.5ex;
         text-align: left; 
         /*background-color: green;*/
        } 
table#ftable-6 td:nth-child(n of .header){
         padding-left: 0.5ex;
         padding-right: 0.5ex;
         text-align: center; 
         /*background-color: gray;*/
        } 
</style>
<table class="ftable" id="ftable-6">
<tr><td></td><td colspan="3" class="header">Mean</td><td colspan="3" class="header">Std.dev</td><td colspan="3" class="header">Median</td></tr>
<tr><td>Baden-Wuerttemberg</td><td>54</td><td>.</td><td>5</td><td>18</td><td>.</td><td>9</td><td>57</td><td>.</td><td>0</td></tr>
<tr><td>Bayern</td><td>54</td><td>.</td><td>4</td><td>18</td><td>.</td><td>9</td><td>56</td><td>.</td><td>0</td></tr>
<tr><td>Berlin</td><td>52</td><td>.</td><td>8</td><td>19</td><td>.</td><td>8</td><td>57</td><td>.</td><td>0</td></tr>
<tr><td>Brandenburg</td><td>59</td><td>.</td><td>7</td><td>19</td><td>.</td><td>3</td><td>62</td><td>.</td><td>5</td></tr>
<tr><td>Bremen</td><td>60</td><td>.</td><td>4</td><td>11</td><td>.</td><td>5</td><td>63</td><td>.</td><td>0</td></tr>
<tr><td>Hamburg</td><td>51</td><td>.</td><td>5</td><td>18</td><td>.</td><td>7</td><td>53</td><td>.</td><td>0</td></tr>
<tr><td>Hessen</td><td>56</td><td>.</td><td>9</td><td>18</td><td>.</td><td>5</td><td>60</td><td>.</td><td>0</td></tr>
<tr><td>Mecklenburg-Vorpommern</td><td>57</td><td>.</td><td>0</td><td>19</td><td>.</td><td>2</td><td>60</td><td>.</td><td>5</td></tr>
<tr><td>Niedersachsen</td><td>55</td><td>.</td><td>1</td><td>18</td><td>.</td><td>4</td><td>56</td><td>.</td><td>0</td></tr>
<tr><td>Nordrhein-Westfalen</td><td>53</td><td>.</td><td>9</td><td>19</td><td>.</td><td>1</td><td>55</td><td>.</td><td>0</td></tr>
<tr><td>Rheinland-Pfalz</td><td>57</td><td>.</td><td>2</td><td>18</td><td>.</td><td>2</td><td>60</td><td>.</td><td>5</td></tr>
<tr><td>Saarland</td><td>61</td><td>.</td><td>9</td><td>17</td><td>.</td><td>3</td><td>65</td><td>.</td><td>0</td></tr>
<tr><td>Sachsen</td><td>58</td><td>.</td><td>3</td><td>16</td><td>.</td><td>7</td><td>60</td><td>.</td><td>5</td></tr>
<tr><td>Sachsen-Anhalt</td><td>54</td><td>.</td><td>7</td><td>17</td><td>.</td><td>1</td><td>56</td><td>.</td><td>0</td></tr>
<tr><td>Schleswig-Holstein</td><td>60</td><td>.</td><td>0</td><td>19</td><td>.</td><td>9</td><td>65</td><td>.</td><td>0</td></tr>
<tr><td>Thueringen</td><td>57</td><td>.</td><td>8</td><td>17</td><td>.</td><td>4</td><td>60</td><td>.</td><td>0</td></tr>
</table>
```

Of course we can also export to LaTeX:

```r
toLatex(age.ftab,digits=1,show.titles=FALSE)
```

```
\begin{tabular}{llD{.}{.}{1}D{.}{.}{1}D{.}{.}{1}}
\toprule
 && \multicolumn{1}{c}{Mean}&\multicolumn{1}{c}{Std.dev}&\multicolumn{1}{c}{Median}\\
\midrule
Baden-Wuerttemberg     && 54.5 & 18.9 & 57.0\\
Bayern                 && 54.4 & 18.9 & 56.0\\
Berlin                 && 52.8 & 19.8 & 57.0\\
Brandenburg            && 59.7 & 19.3 & 62.5\\
Bremen                 && 60.4 & 11.5 & 63.0\\
Hamburg                && 51.5 & 18.7 & 53.0\\
Hessen                 && 56.9 & 18.5 & 60.0\\
Mecklenburg-Vorpommern && 57.0 & 19.2 & 60.5\\
Niedersachsen          && 55.1 & 18.4 & 56.0\\
Nordrhein-Westfalen    && 53.9 & 19.1 & 55.0\\
Rheinland-Pfalz        && 57.2 & 18.2 & 60.5\\
Saarland               && 61.9 & 17.3 & 65.0\\
Sachsen                && 58.3 & 16.7 & 60.5\\
Sachsen-Anhalt         && 54.7 & 17.1 & 56.0\\
Schleswig-Holstein     && 60.0 & 19.9 & 65.0\\
Thueringen             && 57.8 & 17.4 & 60.0\\
\bottomrule
\end{tabular}
```



[^1]: The [German Longitudinal Election
Study](https://www.gesis.org/gles/about-gles) is funded by the German National
Science Foundation (DFG) and carried out outin close cooperation with the
[DGfW](https://www.dgfw.info/), German Society for Electoral Studies.  Principal
investigators are Hans Rattinger (University of Mannheim, until 2014), Sigrid
Roßteutscher (University of Frankfurt), Rüdiger Schmitt-Beck (University of
Mannheim), Harald Schoen (Mannheim Centre for European Social Research, from
2015), Bernhard Weßels (Social Science Research Center Berlin), and Christof
Wolf (GESIS – Leibniz Institute for the Social Sciences, since 2012). Neither
the funding organisation nor the principal investigators bear any responsibility
for the example code shown here.