1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
|
#Helpers
# Function to take only rows that form distinct levels of factors
# Need to figure out how to build a model matrix better.
trimModelFrame <- function(data){
# Identify numerics
nums <- sapply(data, is.numeric)
vars <- names(nums[!nums == TRUE])
dataList <- vector(mode = "list", length = length(vars))
names(dataList) <- vars
for(i in vars){
dataList[[i]] <- data[!duplicated(data[, i]), ,drop=FALSE]
}
newdat <- do.call(rbind, dataList)
newdat <- newdat[!duplicated(newdat),]
return(newdat)
}
# FROM LME4
residDF.merMod <- function(object) {
npar <- length(object@beta) + length(object@theta) +
object@devcomp[["dims"]][["useSc"]]
nobs <- nrow(object@frame)
## TODO: how do we feel about counting the scale parameter ???
return(nobs - npar)
}
# from ARM as.matrix.VarCorr
easyVarCorr <- function (varc, useScale, digits){
# VarCorr function for lmer objects, altered as follows:
# 1. specify rounding
# 2. print statement at end is removed
# 3. reMat is returned
# 4. last line kept in reMat even when there's no error term
sc <- attr(varc, "sc")[[1]]
if(is.na(sc)) sc <- 1
# recorr <- lapply(varc, function(el) el@factors$correlation)
recorr <- lapply(varc, function(el) attr(el, "correlation"))
#reStdDev <- c(lapply(recorr, slot, "sd"), list(Residual = sc))
reStdDev <- c(lapply(varc, function(el) attr(el, "stddev")), list(Residual = sc))
reLens <- unlist(c(lapply(reStdDev, length)))
reMat <- array('', c(sum(reLens), 4),
list(rep('', sum(reLens)),
c("Groups", "Name", "Variance", "Std.Dev.")))
reMat[1+cumsum(reLens)-reLens, 1] <- names(reLens)
reMat[,2] <- c(unlist(lapply(reStdDev, names)), "")
# reMat[,3] <- format(unlist(reStdDev)^2, digits = digits)
# reMat[,4] <- format(unlist(reStdDev), digits = digits)
reMat[,3] <- fround(unlist(reStdDev)^2, digits)
reMat[,4] <- fround(unlist(reStdDev), digits)
if (any(reLens > 1)) {
maxlen <- max(reLens)
corr <-
do.call("rbind",
lapply(recorr,
function(x, maxlen) {
x <- as(x, "matrix")
# cc <- format(round(x, 3), nsmall = 3)
cc <- fround (x, digits)
cc[!lower.tri(cc)] <- ""
nr <- dim(cc)[1]
if (nr >= maxlen) return(cc)
cbind(cc, matrix("", nr, maxlen-nr))
}, maxlen))
colnames(corr) <- c("Corr", rep("", maxlen - 1))
reMat <- cbind(reMat, rbind(corr, rep("", ncol(corr))))
}
# if (!useScale) reMat <- reMat[-nrow(reMat),]
if (useScale<0) reMat[nrow(reMat),] <- c ("No residual sd", rep("",ncol(reMat)-1))
return (reMat)
}
#' Count the number of random effect terms
#' @source From lme4 package
#' @keywords internal
reTermCount <- function(model){
sum(unlist(lapply(as.list(VarCorr(model)), function(x) sqrt(length(x)))))
}
#' Get names of random effect terms in a model object
#' @param model a merMod object with random effect terms
#' @return a data.frame with rows for each term with columns naming the grouping
#' term and the effect type
#' @keywords internal
reTermNames <- function(model){
tmp <- NA
for(i in 1:length(names(ngrps(model)))){
cons <- names(ngrps(model))[i]
vars <- paste(cons, unlist(dimnames(VarCorr(model)[[i]])[1]), sep = "-")
tmp <- c(tmp, vars)
}
tmp <- na.omit(tmp)
tmp <- t(as.data.frame(strsplit(tmp, "-")))
row.names(tmp) <- NULL
colnames(tmp) <- c("group", "effect")
tmp <- as.data.frame(tmp)
tmp$group <- as.character(tmp$group)
tmp$effect <- as.character(tmp$effect)
return(tmp)
}
#' Clean formula
#' @description a function to modify the formula for a merMod object to create
#' a model matrix with all predictor terms in both the group level and fixed
#' effect level
#' @param model a merMod object from lme4
#' @return a formula object
#' @keywords internal
formulaBuild <- function(model){
slopeFX <- setdiff(all.vars(model@call$formula), names(ngrps(model)))
missVar <- setdiff(slopeFX, all.vars(nobars(model@call$formula)))
newForm <- nobars(model@call$formula)
if(length(missVar > 0)){
newForm <- paste(Reduce(paste, deparse(newForm)), paste(missVar, collapse = " +"), sep = " + ")
}
newForm <- as.formula(newForm)
return(newForm)
}
##' Random Effects formula only
##' @param f a model formula
##' @param response logical, should the result include the response
##' @return a formula
##' @keywords internal
reOnly <- function(f,response=FALSE) {
response <- if (response && length(f)==3) f[[2]] else NULL
reformulate(paste0("(", vapply(findbars(f), safeDeparse, ""), ")"),
response=response)
}
safeDeparse <- function(x, collapse=" ") paste(deparse(x, 500L), collapse=collapse)
#' Build model matrix
#' @description a function to create a model matrix with all predictor terms in
#' both the group level and fixed effect level
#' @param model a merMod object from lme4
#' @param newdata a data frame to construct the matrix from
#' @param which a character which matrix to return,default is full matrix with fixed and
#' random terms, other options are "fixed" and "random"
#' @source Taken from predict.merMod in lme4
#' @import lme4
#' @keywords internal
buildModelMatrix <- function(model, newdata, which = "full"){
X <- getME(model, "X")
X.col.dropped <- attr(X, "col.dropped")
if (is.null(newdata)) {
newdata <- model@frame
}
RHS <- formula(substitute(~R,
list(R = RHSForm(formula(model, fixed.only=TRUE)))))
Terms <- terms(model,fixed.only=TRUE)
mf <- model.frame(model, fixed.only = FALSE)
isFac <- vapply(mf, is.factor, FUN.VALUE = TRUE)
isFac[attr(Terms,"response")] <- FALSE
orig_levs <- if (length(isFac)==0) NULL else lapply(mf[isFac],levels)
# Suppress warnings about non-factors classified as factors
# These are false alarms related to grouping terms
mfnew <- suppressWarnings(model.frame(delete.response(Terms),
newdata,
na.action="na.pass",
xlev=orig_levs)
)
X <- model.matrix(RHS, data=mfnew,
contrasts.arg=attr(X,"contrasts"))
offset <- 0 # rep(0, nrow(X))
tt <- terms(model)
if (!is.null(off.num <- attr(tt, "offset"))) {
for (i in off.num)
offset <- offset + eval(attr(tt,"variables")[[i + 1]], newdata)
}
fit.na.action <- attr(mfnew,"na.action")
if(is.numeric(X.col.dropped) && length(X.col.dropped) > 0) {
X <- X[, -X.col.dropped, drop=FALSE]
}
re.form <- reOnly(formula(model)) # RE formula only
newRE <- mkNewReTrms(object = model,
newdata = newdata, re.form, na.action="na.pass",
allow.new.levels = TRUE)
## reMat <- t(as.matrix(newRE$Zt))
## reMat <- as.matrix(reMat)
reMat <- Matrix::t(newRE$Zt) ## what breaks if we keep this sparse???
colnames(reMat) <- rownames(newRE$Zt)
mm <- cbind(X, reMat)
if(which == "full"){
return(mm)
} else if(which == "fixed"){
return(X)
} else if(which == "random"){
return(reMat)
}
}
#' Calculate the intraclass correlation using mixed effect models
#'
#' @param outcome a character representing the variable of the outcome
#' @param group a character representing the name of the grouping term
#' @param data a data.frame
#' @param subset an optional subset
#'
#' @return a numeric for the intraclass correlation
#' @export
#' @import lme4
#' @examples
#' data(sleepstudy)
#' ICC(outcome = "Reaction", group = "Subject", data = sleepstudy)
ICC <- function(outcome, group, data, subset=NULL){
fm1 <- as.formula(paste(outcome, "~", "1 + (1|", group, ")"))
if(length(table(data[, outcome])) == 2){
nullmod <- glmer(fm1, data = data, subset = subset, family = 'binomial')
} else {
nullmod <- lmer(fm1, data = data, subset = subset)
}
between <- as.numeric(attr(VarCorr(nullmod)[[1]], "stddev"))
within <- arm::sigma.hat(nullmod)$sigma$data
ICC <- between^2 / (within^2 + between^2)
return(ICC)
}
#' Utility function to make RE terms objects
#' @param object a model object
#' @param newdata a data.frame to build RE terms for
#' @param re.form a random effect formula to simulate, generated by
#' \code{\link{reOnly}}
#' @param na.action an object describing how NA values should be handled in newdata
#' @param allow.new.levels logical, should new levels be allowed in factor variables
#' @return a random effect terms object for a merMod
#' @import lme4
#' @keywords internal
mkNewReTrms <- function(object, newdata, re.form=NULL, na.action=na.pass,
allow.new.levels=FALSE)
{
if (is.null(newdata)) {
rfd <- mfnew <- model.frame(object)
} else {
mfnew <- model.frame(delete.response(terms(object, fixed.only=TRUE)),
newdata, na.action=na.action)
if(packageVersion("lme4") < "1.1.9"){
old <- TRUE
} else{
old <- FALSE
}
if (old) {
rfd <- na.action(newdata)
if (is.null(attr(rfd,"na.action")))
attr(rfd,"na.action") <- na.action
} else {
newdata.NA <- newdata
if (!is.null(fixed.na.action <- attr(mfnew,"na.action"))) {
newdata.NA <- newdata.NA[-fixed.na.action,]
}
tt <- delete.response(terms(object,random.only=TRUE))
## need to let NAs in RE components go through -- they're handled downstream
rfd <- model.frame(tt,newdata.NA,na.action=na.pass)
if (!is.null(fixed.na.action))
attr(rfd,"na.action") <- fixed.na.action
}
}
if (inherits(re.form, "formula")) {
## DROP values with NAs in fixed effects
if (length(fit.na.action <- attr(mfnew,"na.action")) > 0) {
newdata <- newdata[-fit.na.action,]
}
## note: mkReTrms automatically *drops* unused levels
# rfd = model frame
ReTrms <- mkReTrms(findbars(re.form[[2]]), rfd)
## update Lambdat (ugh, better way to do this?)
ReTrms <- within(ReTrms, Lambdat@x <- unname(getME(object,"theta")[Lind]))
#
if (!allow.new.levels && any(vapply(ReTrms$flist, anyNA, NA)))
stop("NAs are not allowed in prediction data",
" for grouping variables unless allow.new.levels is TRUE")
ns.re <- names(re <- ranef(object, condVar = FALSE))
nRnms <- names(Rcnms <- ReTrms$cnms)
if (!all(nRnms %in% ns.re))
stop("grouping factors specified in re.form that were not present in original model")
new_levels <- lapply(ReTrms$flist, function(x) levels(factor(x)))
## fill in/delete levels as appropriate
re_x <- Map(function(r,n) levelfun(r,n,allow.new.levels=allow.new.levels),
re[names(new_levels)], new_levels)
re_new <- lapply(seq_along(nRnms), function(i) {
rname <- nRnms[i]
if (!all(Rcnms[[i]] %in% names(re[[rname]])))
stop("random effects specified in re.form that were not present in original model")
re_x[[rname]][,Rcnms[[i]]]
})
re_new <- unlist(lapply(re_new, t))
}
Zt <- ReTrms$Zt
attr(Zt, "na.action") <- attr(re_new, "na.action") <- attr(mfnew, "na.action")
list(Zt=Zt, b=re_new, Lambdat = ReTrms$Lambdat)
}
#' Parse merMod formulas
#' @keywords internal
RHSForm <- function(form,as.form=FALSE) {
rhsf <- form[[length(form)]]
if (as.form) reformulate(deparse(rhsf)) else rhsf
}
#' Parse merMod levels
#' @keywords internal
levelfun <- function(x,nl.n,allow.new.levels=FALSE) {
if (!all(nl.n %in% rownames(x))) {
if (!allow.new.levels) stop("new levels detected in newdata")
newx <- as.data.frame(matrix(0, nrow=length(nl.n), ncol=ncol(x),
dimnames=list(nl.n, names(x))))
newx[rownames(x),] <- x
x <- newx
}
if (!all(r.inn <- rownames(x) %in% nl.n)) {
x <- x[r.inn,,drop=FALSE]
}
return(x)
}
|