File: merData.R

package info (click to toggle)
r-cran-mertools 0.6.2-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,716 kB
  • sloc: sh: 13; makefile: 2
file content (451 lines) | stat: -rw-r--r-- 17,745 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
#' @title Clean up variable names in data frames
#' @name sanitizeNames
#' @description Strips out transformations from variable names in data frames
#' @param data a data.frame
#' @return a data frame with variable names cleaned to remove factor() construction
sanitizeNames <- function(data){
  badFac <- grep("factor\\(", names(data))
  for(i in badFac){
    names(data)[i] <- gsub("factor\\(", "", names(data)[i])
    names(data)[i] <- gsub("\\)", "", names(data)[i])
  }
  row.names(data) <- NULL
  return(data)
}

#' @title Remove attributes from a data.frame
#' @name stripAttributes
#' @description Strips attributes off of a data frame that come with a merMod model.frame
#' @param data a data.frame
#' @return a data frame with variable names cleaned to remove all attributes except for
#' names, row.names, and class
stripAttributes <- function(data){
  attr <- names(attributes(data))
  good <- c("names", "row.names", "class")
  for(i in attr[!attr %in% good]){
    attr(data, i) <- NULL
  }
  return(data)
}


#' @title Draw a single observation out of an object matching some criteria
#' @name draw
#' @description Draw is used to select a single observation out of an R object.
#' Additional parameters allow the user to control how that observation is
#' chosen in order to manipulate that observation later. This is a generic
#' function with methods for a number of objects.
#' @param object the object to draw from
#' @param type what kind of draw to make. Options include random or average
#' @param varList a list specifying filters to subset the data by when making the
#' draw
#' @param seed numeric, optional argument to set seed for simulations, ignored if type="average"
#' @param ... additional arguments required by certain methods
#' @return a data.frame with a single row representing the desired observation
#' @details In cases of tie, ".", may be substituted for factors.
#' @export draw
#' @rdname draw
draw <- function(object, type = c("random", "average"),
                 varList = NULL, seed = NULL, ...){
  UseMethod("draw")
}

#' @title Draw an observation from a merMod object
#' @rdname draw
#' @method draw merMod
#' @export
#' @import lme4
#' @examples
#' fm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
#' # Random case
#' draw(fm1, type = "random")
#' # Average
#' draw(fm1, type = "average")
#' # Subset
#' draw(fm1, type = "average", varList = list("Subject" = "308"))
#'
draw.merMod <- function(object, type = c("random", "average"),
                        varList = NULL, seed = NULL, ...){
  type <- match.arg(type, c("random", "average"), several.ok = FALSE)
  if(type == 'random'){
    out <- randomObs(object, varList, seed)
    return(out)
  } else if(type == 'average'){
    out <- averageObs(object, varList, ...)
    return(out)
  }
}

#' @title Select a random observation from model data
#' @name randomObs
#' @description Select a random observation from the model frame of a merMod
#' @param merMod an object of class merMod
#' @param varList optional, a named list of conditions to subset the data on
#' @param seed numeric, optional argument to set seed for simulations
#' @return a data frame with a single row for a random observation, but with full
#' factor levels. See details for more.
#' @details Each factor variable in the data frame has all factor levels from the
#' full model.frame stored so that the new data is compatible with predict.merMod
#' @export
randomObs <- function(merMod, varList, seed = NULL){
  if(!missing(varList)){
    data <- subsetList(merMod@frame, varList)
  }

  if (!is.null(seed))
    set.seed(seed)
  else if (!exists(".Random.seed", envir = .GlobalEnv))
    runif(1)

  out <- data[sample(1:nrow(data), 1),]
  chars <- !sapply(out, is.numeric)
  for(i in names(out[, chars])){
    out[, i] <- superFactor(out[, i], fullLev = unique(merMod@frame[, i]))
  }
  out <- stripAttributes(out)
  return(out)
}

#' @title Collapse a dataframe to a single average row
#' @name collapseFrame
#' @description Take an entire dataframe and summarize it in one row by using the
#' mean and mode.
#' @param data a data.frame
#' @return a data frame with a single row
#' @details Each character and factor variable in the data.frame is assigned to the
#' modal category and each numeric variable is collapsed to the mean. Currently if
#' mode is a tie, returns a "."
collapseFrame <- function(data){
  chars <- !sapply(data, is.numeric)
  chars <- names(data[, chars, drop = FALSE])
  nums <- sapply(data, is.numeric)
  nums <- names(data[, nums, drop = FALSE])
  numDat <- apply(data[, nums, drop = FALSE], 2, mean)
  statmode <- function(x){
    z <- table(as.vector(x))
    m <- names(z)[z == max(z)]
    if (length(m) == 1) {
      return(m)
    }
    return(".")
  }
  charDat <- apply(data[, chars, drop = FALSE], 2, statmode)
  cfdata <- cbind(as.data.frame(t(numDat)), as.data.frame(t(charDat)))
  cfdata <- cfdata[, names(data)]
  return(cfdata)
}


#' @title Subset a data.frame using a list of conditions
#' @name subsetList
#' @description Split a data.frame by elements in a list
#' @param data a data.frame
#' @param list a named list of splitting conditions
#' @return a data frame with values that match the conditions in the list
subsetList <- function(data, list){
  if("logical" %in% unlist(lapply(list, class))){
    stop("List is improperly formatted. Try using only `=` instead of `==` in subsets")
  }
  for(i in names(list)){
    data <- split(data, data[, i])
    data <- data[[list[[i]]]]
    data <- as.data.frame(data)
  }
  return(data)
}

#' \code{findFormFuns} used by \link[merTools]{averageObs} to calculate proper
#' averages
#'
#' The purpose is to properly derive data for the average observation in the
#' data by being 'aware' of formulas that contain interactions and/or function
#' calls. For example, in the old behavior, if the formula contained a square
#' term specified as \code{I(x^2)}, we were returning the mean of \code{x(^2)} not the
#' square of mean(x).
#'
#' @param merMod the merMod object from which to draw the average observation
#' @param origData (default=NULL) a data frame containing the original,
#'        untransformed data used to call the model. This MUST be specified if
#'        the original variables used in formula function calls are NOT present
#'        as 'main effects'.
#'
#' @return a data frame with a single row for the average observation, but with full
#' factor levels. See details for more.
#'
#' @export
findFormFuns <- function(merMod, origData = NULL) {
  form <- getCall(merMod)$formula
  form.rhs <- delete.response(terms(form))
  modFrame <- model.frame(merMod)
  if (identical(modFrame, origData)) {
    origData = NULL
  }
  modFrame.tt <- terms(modFrame)
  #This part is a bit kludgy but should work
  modFrame.labels <- unique(unlist(strsplit(attr(modFrame.tt, "term.labels"), split = ":", fixed = TRUE)))
  modFrame.resp <- setdiff(rownames(attr(modFrame.tt, "factors")),
                           unique(unlist(strsplit(colnames(attr(modFrame.tt, "factors")), split = ":", fixed = TRUE))))

  merMod.weights <- hasWeights(merMod)
  if (merMod.weights) {
    modFrame <- modFrame[, c(modFrame.resp, modFrame.labels, "(weights)")]
  } else {
    modFrame <- modFrame[, c(modFrame.resp, modFrame.labels)]
  }

  #Scan RHS of formula labels for parens -> exit if clean
  paren_terms <- grepl("[()]", c(modFrame.resp, modFrame.labels))

  if (!any(paren_terms)) {
    if(is.null(origData)){
      out <- collapseFrame(modFrame)
    } else{
      out <- collapseFrame(origData)
    }
    return(out)
  } else {
    rhs.vars <- all.vars(form.rhs)
    # if (merMod.weights) {
    #   rhs.vars <- c(rhs.vars, c("(weights)"))
    # }
    #Warning if functions are detected but neither MAIN EFFECTS NOR DATA are supplied
    if (is.null(origData))  {
      if (!all(rhs.vars %in% modFrame.labels)) {
        warning(paste("\n\n  Functions detected in formula without user supplied data",
                      "  or main effects of affected variables so returning means of",
                      "  transformed variables.\n",
                      "  Make sure that this is appropriate or supply untransformed",
                      "  data using the 'origData' argument. See ?merTools::findFormFuns", sep = "\n"))
        out <- collapseFrame(modFrame)
        return(out)
      } else {
        #Functions Detected and Main Effects Present
        out <- collapseFrame(modFrame)
        for (i in which(paren_terms)) {
          out[1,i] <- eval(parse(text = colnames(out)[i]), envir = out[, rhs.vars])
        }
        return(out)
      }
    } else {
      #Functions Detected and Not All Main Effects Present ... but Data supplied
      out <- collapseFrame(modFrame)
      outData <- collapseFrame(origData)
      for (i in which(paren_terms)) {
        out[1,i] <- eval(parse(text = colnames(out)[i]), envir = outData)
      }
      return(out)
    }
  }
}

#' Identify if a merMod has weights
#'
#' @param merMod the merMod object to test for weights
#'
#' @return TRUE or FALSE for whether the model has weights
hasWeights <- function(merMod) {
  if (all(merMod@resp$weights == 1)) {
    FALSE
  } else {
    TRUE
  }
}


#' @title Find the average observation for a merMod object
#' @name averageObs
#' @description Extract a data frame of a single row that represents the
#' average observation in a merMod object. This function also allows the
#' user to pass a series of conditioning argument to calculate the average
#' observation conditional on other characteristics.
#' @param merMod a merMod object
#' @param varList optional, a named list of conditions to subset the data on
#' @param origData (default=NULL) a data frame containing the original,
#'        untransformed data used to call the model. This MUST be specified if
#'        the original variables used in formula function calls are NOT present
#'        as 'main effects'.
#' @param ... not used currently
#' @return a data frame with a single row for the average observation, but with full
#' factor levels. See details for more.
#' @details Each character and factor variable in the data.frame is assigned to the
#' modal category and each numeric variable is collapsed to the mean. Currently if
#' mode is a tie, returns a "." Uses the collapseFrame function.
#' @export
averageObs <- function(merMod, varList = NULL, origData = NULL, ...){
  if(!missing(varList)){
    if (is.null(origData)) {
      data <- subsetList(merMod@frame, varList)
    } else {
      data <- subsetList(origData, varList)
    }
    if(nrow(data) < 20 & nrow(data) > 2){
      warning("Subset has less than 20 rows, averages may be problematic.")
    }
    if(nrow(data) <3){
      warning("Subset has fewer than 3 rows, computing global average instead.")
      if (is.null(origData)) {
        data <- merMod@frame
      } else {
        data <- origData
      }
    }
  } else{
    if (is.null(origData)) {
      data <- merMod@frame
    } else {
      data <- origData
    }
  }
  out <- findFormFuns(merMod, origData = data)
  reTerms <- names(ngrps(merMod))
  if(any(reTerms %in% names(varList))){
    reTerms <- reTerms[!reTerms %in% names(varList)]
  }
  if(length(reTerms) > 0){
    for(i in 1:length(reTerms)){
      out[, reTerms[i]] <- REquantile(merMod = merMod,
                                      quantile = 0.5, groupFctr = reTerms[[i]])
      out[, reTerms[i]] <- as.character(out[, reTerms[i]])
    }
  }
  chars <- !sapply(out, is.numeric)
  for(i in names(out[, chars, drop = FALSE])){ # drop = FALSE
    out[, i] <- try(superFactor(out[, i], fullLev = unique(merMod@frame[, i])), silent = TRUE)
  }
  out <- stripAttributes(out)
  out <- out[, names(merMod@frame)]
  return(out)
}


#' @title Create a factor with unobserved levels
#' @name superFactor
#' @description Create a factor variable and include unobserved levels
#' for compatibility with model prediction functions
#' @param x a vector to be converted to a factor
#' @param fullLev a vector of factor levels to be assigned to x
#' @return a factor variable with all observed levels of x and all levels
#' of x in fullLev
#' @export
#' @examples
#' \donttest{
#' regularFactor <- c("A", "B", "C")
#' regularFactor <- factor(regularFactor)
#' levels(regularFactor)
#' # Now make it super
#' newLevs <- c("D", "E", "F")
#' regularFactor <- superFactor(regularFactor, fullLev = newLevs)
#' levels(regularFactor) # now super
#' }
superFactor <- function(x, fullLev){
  x <- as.character(x)
  if("factor" %in% class(fullLev)){
    fullLev <- unique(levels(fullLev))
  }
  unobsLev <- unique(x)[!unique(x) %in% fullLev]
  x <- factor(x, levels = c(fullLev, unobsLev),
              labels = c(fullLev, unobsLev))
  return(x)
}

#' @title Randomly reorder a dataframe
#' @name shuffle
#' @description Randomly reorder a dataframe by row
#' @param data a data frame
#' @return a data frame of the same dimensions with the rows reordered
#' randomly
shuffle <- function(data){
  return(data[sample(nrow(data)),])
}


# wiggle for a single variable (var) and single set of changing values (values)
single_wiggle <- function(data, var, values) {
  tmp.data <- data
  data <- do.call("rbind", replicate(length(values), data, simplify= FALSE))
  data[, var] <- rep(values, each = nrow(tmp.data))
  if(any(class(tmp.data[, var]) %in% c("factor", "ordered"))){
    data[, var] <- superFactor(data[, var],
                               fullLev = levels(tmp.data[, var]))

  }
  return(data)
}

#' @title Assign an observation to different values
#' @name wiggle
#' @description Creates a new data.frame with copies of the original observation,
#' each assigned to a different user-specified value of a variable. Allows the
#' user to look at the effect on predicted values of changing either a single variable
#' or multiple variables.
#' @param data a data frame with one or more observations to be reassigned
#' @param varlist a character vector specifying the name(s) of the variable to adjust
#' @param valueslist a list of vectors with the values to assign to var
#' @return a \code{data.frame} with each row assigned to the one of the new variable combinations.
#' All variable combinations are returned, eg wiggling two variables with 3 and 4 variables
#' respectively will return a new dataset with \code{3 * 4 = 12} observations.
#' @details If the variable specified is a factor, then wiggle will return it
#' as a character.
#' @export
#' @examples
#' data(iris)
#' wiggle(iris[3,], varlist = "Sepal.Width", valueslist = list(c(1, 2, 3, 5)))
#' wiggle(iris[3:5,], "Sepal.Width", valueslist = list(c(1, 2, 3, 5)))
#' wiggle(iris[3,], c("Sepal.Width", "Petal.Length"), list(c(1,2,3,5), c(3,5,6)))
#' wiggle(iris[3:5,], c("Sepal.Width", "Petal.Length"), list(c(1,2,3,5), c(3,5,6)))
wiggle <- function(data, varlist, valueslist) {
  if (length(varlist) != length(valueslist)) stop("varlist and valueslist must be equi-length.")
  n_var <- length(varlist)
  if (n_var == 1) {
    return(single_wiggle(data, varlist[[1]], valueslist[[1]]))
  } else {
    temp <- single_wiggle(data, varlist[[1]], valueslist[[1]])
    temp <- split(temp, f= varlist[[1]])
    varlist <- varlist[-1]; valueslist <- valueslist[-1]
    return(do.call("rbind", lapply(temp, wiggle, varlist= varlist, valueslist= valueslist)))
  }
}

#' @title Identify group level associated with RE quantile
#' @name REquantile
#' @description For a user specified quantile (or quantiles) of the random effect
#' terms in a merMod object. This allows the user to easily identify the observation
#' associated with the nth percentile effect.
#' @param merMod a merMod object with one or more random effect levels
#' @param quantile a numeric vector with values between 0 and 100 for quantiles
#' @param groupFctr a character of the name of the random effect grouping factor to extract
#' quantiles from
#' @param term a character of the random effect to extract for the grouping factor
#' specified. Default is the intercept.
#' @return a vector of the level of the random effect grouping term that corresponds
#' to each quantile
#' @export
#' @examples
#' \donttest{
#' fm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
#' REquantile(fm1, quantile = 0.25, groupFctr = "Subject")
#' REquantile(fm1, quantile = 0.25, groupFctr = "Subject", term = "Days")
#' }
REquantile <- function(merMod, quantile, groupFctr, term = "(Intercept)"){
  if(any(quantile > 1 | quantile < 0)){
    stop("Quantiles must be specified on the range 0-1")
  }
  myRE <- ranef(merMod)[[groupFctr]]
  if(is.null(myRE)){
    stop("Random effect group name not found. Please respecify grouping factor.")
  }
  myRE.tmp <- try(myRE[order(myRE[, term]), ,drop = FALSE], silent = TRUE)
  if(!is(myRE.tmp, "data.frame")){
    term1 <- names(myRE)[1]
    myRE.tmp <- try(myRE[order(myRE[, term1]), ,drop = FALSE], silent = TRUE)
    warning(paste0(term, " not found in random effect terms. Returning first term, ",
          term1,", for grouping factor, ", groupFctr, ", instead."))
  }
  myRE <- myRE.tmp; myRE.tmp <- NULL
  nobs <- nrow(myRE)
  if(nobs < 20){
    message("Number of observations < 20, random effect quantiles may not be well-defined.")
  }
  obsnum <- floor(quantile * nobs)
  return(rownames(myRE)[obsnum])
}